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Luminal acid elicits a protective duodenal mucosal response
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Abstract. Measuring duodenal epithelial intracellular pH (pHi), blood flow and mucus gel thickness

(MGT), we studied duodenal defense mechanisms in vivo so as to more fully understand the protec-

tive mucosal response to luminal acid. Exposure of the mucosa to physiologic acid solutions promptly

lowered pHi, followed by recovery after acid was removed, indicating that acid at physiologic concen-

trations readily diffuses into, but does not damage duodenal epithelial cells. Cellular acid then exits the

cell via an amiloride-inhibitable process, presumably sodium-proton exchange (NHE1). MGT and

blood flow increase promptly during acid perfusion; both decrease after acid challenge and are inhib-

ited by vanilloid receptor antagonists or by sensory afferent denervation. Bicarbonate secretion does

not increase during acid perfusion but increases following acid challenge. Inhibition of cellular alkali

uptake by anion transport inhibitors lowers pHi, and increases mucosal injury, whereas inhibition of

apical alkali secretion alkalinizes pHi and diminishes injury. These observations support the following

hypothesis: luminal acid diffuses into the epithelial cells, lowering pHi. Acidic pHi increases the activity

of a basolateral NHE, acidifying the submucosal space and increasing cellular alkali loading. The acidic

submucosal space activates capsaicin receptors on afferent nerves, increasing MGT and blood flow.

With continued acid exposure, a new steady state with thickened mucus gel, increased blood flow, and

a higher cellular buffering power protects the mucosa from acid injury. After acid challenge, mucus

secretion, blood flow and pHi return to normal, while bicarbonate secretion increases. Through these

integrated mechanisms, the epithelial cells are protected from damage due to repeated pulses of con-

centrated gastric acid. (Keio J Med 51 (1): 29–35, March 2002)
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Introduction

The location of the duodenal epithelium just distal to
the gastric antrum and proximal to the pancreatico-
biliary ducts uniquely exposes it to a highly variable pH
environment due to peristaltically conveyed pulses of
concentrated gastric acid combining with secreted
bicarbonate. Since the duodenum does not have the in-
herent acid protective structural properties of its ‘neigh-
bors to the North’, namely the stomach and esophagus,
whose intercellular junctions severely curtail transepi-
thelial ionic permeation,1,2 the duodenum, being leaky,
has evolved alternate means for defense against acid
(Fig. 1).

In this review, we will systematically describe the cur-
rent knowledge concerning duodenal defense mecha-
nisms, ending with a scheme that integrates these mech-
anisms into a coherent protective response to luminal
acid. Moreover, we will discuss how these mechanisms
might be altered in the disease cystic fibrosis, in which
the duodenum appears to be highly resistant to luminal
acid.3–5

Duodenal Luminal pH

Antral peristalsis and pyloric opening exposes the
proximal duodenum to cyclical variations of luminal pH.
These cycles are more pronounced post-prandially, and
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vary luminal pH between two and seven on a scale of
minutes.6–8 These rapid shifts of pH presumably arise
from alternate exposure to gastric acid and secreted bi-
carbonate of epithelial and pancreatic origin. In con-
trast, gastric luminal pH is sustained on a minute-to-
minute scale, although it does of course vary over a 24
hr period. Rapid shifts of duodenal pH are likely to
create intense stress on the epithelial cells to maintain
constant intracellular pH (pHi) in order to maintain
function and prevent irreversible necrosis due to intra-
cellular acidification. Thus, a potent defensive system
must be in place to prevent cellular acidification during
mucosal acid challenge.

Defense Mechanisms

The most studied duodenal defense mechanism is ep-
ithelial bicarbonate secretion. Other potential defense
mechanisms include the mucus gel and mucosal blood
flow. Reparative processes such as restitution from in-
jury are beyond the scope of this review and will not be
further addressed.

Bicarbonate secretion

Bicarbonate secretion is a logical duodenal defense
mechanism for the following reasons: 1) Duodenal bi-
carbonate secretion/cm2 epithelium is much greater than
gastric bicarbonate secretion,2,9–11 2) pH electrode
studies suggest that epithelial bicarbonate secretion
creates a layer of neutral pH next to the mucosa,12–14

3) Helicobacter pylori infection complicated by duo-
denal ulcers is associated with diminished bicarbon-
ate secretion, and eradication of helicobacter infection

restores duodenal bicarbonate secretory capacity.15,16
The mechanism by which bicarbonate is secreted from
the epithelial cell is controversial. Formerly, it was
thought that CO2 diffusing into the cell was converted
to bicarbonate and protons by cellular carbonic hydrase.
Bicarbonate was then secreted across the apical mem-
brane by anion exchange. More recent studies, includ-
ing molecular immunolocalization and studies of pHi,
do not fully support this mechanism.17–19 What appears
to also be present is that bicarbonate is transported
from the blood across the basolateral membrane by a
variant of the sodium-bicarbonate transporter, or NBC,
in response to decreased pHi resulting from exposure
to luminal acid. Since inhibiting or eliminating the api-
cal membrane chloride channel cystic fibrosis trans-
membrane regulator (CFTR) greatly attenuates bicar-
bonate secretion,20,21 the CFTR has been implicated in
the mechanism of bicarbonate secretion, although it is
unknown whether it serves directly as a bicarbonate
channel, or indirectly to preserve transmembrane elec-
trical or ion gradients.

Role of alkali loading

We have re-examined the role of bicarbonate secre-
tion in overall duodenal defense from acid, and, in do-
ing so, have formulated a novel hypothesis with regard
to the role of bicarbonate transport. To test these pos-
sibilities, we developed a technique for the measure-
ment of pHi, blood flow, and mucus gel thickness in the
duodenum of anesthetized rats.22 With this system, we
could perfuse solutions of varying pH through a cham-
ber placed over the exposed duodenal mucosa, thereby
simulating changes in luminal pH. With this system, we

Fig. 1 Duodenal defense mechanisms. All of these mechanisms are believed to defend the mucosa against luminal acid, although bicarbonate
secretion is the most accepted.
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exposed the mucosa to a brief pulse of acid, which
promptly decreased pHi. This fall of pHi, evenwithmildly
acidic perfusates, suggested that acid could readily pene-
trate the overlying mucus gel and the mucosa, therefore
calling into question the role of pre-epithelial bicarbon-
ate neutralization in duodenal mucosal defense. With re-
moval of the acid challenge, pHi was elevated to super-
normal values, which indicated that cellular buffering
power has increased, not decreased, during acid chal-
lenge. Furthermore, a second acid challenge acidified pHi

less than the first, further confirming that acid exposure
was associated with cellular alkali loading and increased
cellular buffering power. This somewhat surprising find-
ing was confirmed by comparison with prior studies con-
ducted in a variety of systems, in which acid pulses were
followed by pHi overshoot, indicative of cellular alkali
loading in cells containing a plasma membrane alkali-
loading mechanism such as sodium-bicarbonate co-
transport.23

Further studies indicated that this alkali loading was
inhibited by the stilbene anion transport inhibitor DIDS
(4,4 0diisothiocyanostilbene-2,2 0-disulfonic acid). When
exposed to two short acid pulses, pHi decreased less
during the second challenge; again strongly suggestive
that cellular buffering power was increased during acid
exposure. Again, DIDS inhibited this adaptive effect.24
Our studies were thus consistent with alkali loading
being induced by luminal acid exposure by a DIDS-
inhibitable mechanism. This finding was expected inso-
far as primary isolated duodenal epithelial cells recov-
ered from acid exposure by a mechanism consistent
with the activity of an NBC,25 and that bicarbonate-
secreting pancreatic duct cells have a basolateral mem-
brane NBC.26 Recently, our laboratory, in collabora-
tion with Dr. Ira Kurtz, have confirmed the presence of
the pancreatic-type isoform of NBC1 (pNBC1) in the
basolateral membrane of rodent proximal duodenal
epithelial cells using immunohistochemistry.27,28

Alkali loading during acid challenge, which increases
cellular buffering power and attenuates the fall of pHi,
is an attractive means of defending the epithelium from
acid challenge. To address how bicarbonate secretion
is related to this observation, we performed parallel
experiments in which bicarbonate secretion was mea-
sured in a perfused duodenal loop exposed to the same
pH perfusion sequence as the measurements of pHi.
Bicarbonate secretion was measured by the conven-
tional acid back-titration technique, but also by mea-
surement of total dissolved CO2 content of the effluent
collected from the perfusion with a CO2 electrode. We
found that titratable alkalinity increased substantially
during acid perfusion. Surprisingly, total CO2 content
decreased somewhat at the same time.24 To account for
the large discrepancy between the back-titration experi-
ments and the measurement of effluent CO2 content,

we performed control experiments in which we mea-
sured total CO2 content in the perfusates and effluent of
perfused duodena. We found that there was a finite loss
of CO2 during duodenal perfusion, in agreement with
prior studies29 but inadequate to explain the discrep-
ancy.

To help interpret the data, we postulated three
means by which acid can disappear from the lumen:
back-diffusion of acid, back-diffusion of CO2, and neu-
tralization by secreted bicarbonate. If all of the acid
disappearance measured by back-titration occurred by
bicarbonate neutralization, the effluent CO2 content
should increase to the same extent as did titratable
acidity, which was not the case. If the perfusate bicar-
bonate was converted into CO2, which then back-
diffused into the epithelium, we would still predict a
large increase of effluent CO2 content. Hence, the best
means of explaining the discrepancy between effluent
CO2 content and acid disappearance is by postulating
that most of the acid loss during perfusion with pH 2
solution is due to acid back-diffusion. In that case, bi-
carbonate secretion must have been unchanged or per-
haps decreased during acid challenge. The implications
of these data, combined with our measurements of pHi,
support our hypothesis that increased cellular buffer-
ing, and not bicarbonate secretion, was the primary
duodenal defense mechanism from acid. Acid was not
neutralized at the duodenal surface, since cellular pHi

clearly decreased during acid challenge, and since acid
back-diffusion was the major means of acid loss when
perfused over the mucosa. Furthermore, since bicar-
bonate secretion was unchanged during acid perfusion,
and only increased after acid removal, secreted bicar-
bonate is unlikely to be protective, since its increased
secretion is present only when it is not needed i.e. when
luminal acid is no longer present. Supporting the con-
cept that bicarbonate secretion is not enhanced during
luminal acid stress are the observations that lowered
pHi deceases cellular bicarbonate concentration, inhib-
iting bicarbonate exit, and that CFTR permeability to
the related anion chloride is diminished at acidic pHi

due to lack of CFTR phosphorylation.30
We further tested this hypothesis by measuring

epithelial injury under conditions in which alkali load-
ing is either inhibited or enhanced, in order to confirm
that bicarbonate loading, and not secretion is the pri-
mary defensive mechanism. To accomplish this, DIDS,
and the anion channel inhibitor NPPB (5-nitro-2-(3-
phenylpropylamino) benzoic acid), added to the perfu-
sate, respectively either decreased or increased pHi.
Changes of pHi also correlated with mucosal injury
susceptibility. The most striking finding was that NPPB
inhibited bicarbonate secretion but increased pHi and
decreased injury susceptibility. Thus, NPPB ‘uncoupled’
bicarbonate secretion from mucosal protection, a novel
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finding that casts further doubt on the primacy of
bicarbonate secretion on mucosal protection.27 In this
proposed mechanism, shown in Fig. 2, bicarbonate
secretion occurs to remove excess alkali from the cell,
when excess intracellular bicarbonate is no longer
needed after acid challenge.

Blood flow

Mucosal blood flow is an accepted component of
upper gastrointestinal barrier function. In the stomach,
for example, interventions that attenuate the hyperemic
response to acid perfusion increase mucosal injury.31–33

The data derived from studies of the duodenum are less
conclusive, however. One potential confounder is that
stimuli of bicarbonate secretion and blood flow are
co-regulated, making it difficult to determine the rela-
tive importance of blood flow in terms of overall barrier
function.

With our technique, we were able to measure blood
flow, pHi, and mucus gel thickness simultaneously. This
technique enabled us to formulate novel conclusions
about the relative contribution of blood flow to overall
barrier function. Mucosal blood flow, as measured by
laser-Doppler flowmetry, increased in response to acid

perfusion.22,34 This response differs from the gastric
mucosa, which must be either injured or pre-treated
with gastrin or other compound in order to induce this
acid response.35,36 Our studies revealed some novel
observations about the nature of duodenal blood flow
and its regulation. For example, inhibition of sodium-
proton exchange (NHE) with the potent amiloride
analog dimethylamiloride inhibited the hyperemic acid
response. Interestingly, acidification of the cytoplasm
by alternate means such as with ammonium pre-pulse
or valinomycin increased blood flow, also inhibitable by
dimethylamiloride.22 These studies suggested that acid
must pass through the epithelial cell and exit via by
NHE prior to eliciting a hyperemic response. In further
studies, we examined the sensing mechanisms underly-
ing the hyperemic response. Capsazepine, an antagonist
to the recently cloned vanilloid receptor, abolished the
hyperemic response to acid, confirming the involvement
of vanilloid receptors in the acid response. Further
studies also confirmed that the hyperemic response was
mediated by a well-known pathway that includes affer-
ent sensory nerves, nitric oxide release the neuro-
peptide calcitonin gene-related peptide (CGRP), but
was not inhibited by indomethacin, a non-selective in-
hibitor of cyclooxygenase. These studies provided data
supporting our proposed mechanism of duodenal acid-
induced hyperemia, including acid diffusion into the
epithelial cell, basolateral extrusion via NHE, activa-
tion of vanilloid receptors on afferent nerves, CGRP re-
lease, with activation of endothelial nitric oxide syn-
thesis, with production of vasodilatory nitric oxide. A
scheme of proposed regulatory mechanisms for blood
flow is shown in Fig. 3.

Mucus secretion

The role of mucus in duodenal mucosal defense is
the subject of only a few studies. The most accepted
hypothesis is that mucus stabilizes the pre-epithelial pH
gradient, with neutral pH measured near the mucosa,
preventing acid from entering the epithelial cells.12,37–39

Mucus secretion is also co-regulated by the same neuro-
hormonal and phamacologic stimuli that increase other
defense mechanisms such as bicarbonate secretion and
blood flow, making it a likely candidate for being a sec-
ondary defense mechanism.

With our technique, we could optically and non-
invasively measure mucus gel thickness in our anes-
thetized preparation.40 We found, for example, that
mucus gel thickness rapidly increases in response to
perfused acid, but equally rapidly decreases in thickness
when the acid challenge is removed. Measurement of
effluent mucus glycoprotein content was consistent with
increased sloughing of mucus into the perfusate when
mucus was rapidly secreted, indicating that there is a

Fig. 2 Sequential response of duodenal epithelial cells to luminal
acid. In the left panel, steady-state pHi ¼@7:1 when no acid is pres-
ent. In the succeeding panels to the right, luminal acid rapidly acidifies
the epithelial cells. Low pHi decreases CFTR conductance and
intracellular [HCO3

�], suppressing HCO3
� secretion. Low pHi also

increases the activity of the basolateral sodium-bicarbonate cotrans-
porter (pNBC1), which in turn increases cellular bicarbonate concen-
tration. When luminal pH returns to neutrality, acid diffuses out of the
cell. The excess intracellular alkali raises pHi over baseline (over-
shoot), which activates CFTR and DRA, which then increases bicar-
bonate secretion. In the disease cystic fibrosis, a dysfunctional CFTR
and DRA limit apical HCO3

� exit, which raises pHi.
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dynamic relation between mucus secretion and erosion,
as has been previously hypothesized.41 When the se-
cretion slowed, the rapid sloughing remained, thinning
the gel until a new steady state occurred. A scheme
depicting our concept of how mucus gel thickness is
regulated is shown in Fig. 4. Further studies showed

that the capsaicin pathway, involving acid-sensing vanil-
loid receptors, afferent nerves, CGRP, and nitric oxide,
regulates mucus gel secretion and that non-selective
COX inhibition with indomethacin abolishes the mucus
secretory response to all secretagogues, suggesting a
fundamental role of prostaglandins in duodenal mucus
secretion.42

Clinical Correlate

We have formulated the ‘‘CF paradox’’27 in which
we pose the question: why are duodenal ulcers not
increased in patients with CF? Patients with CF, for
example, have high normal acid secretion,43 and hence
must take gastric antisecretory medications in order to
diminish esophageal acid reflux and to prevent acid-
mediated inactivation of pancreatic enzymes.44,45 Fur-
thermore, pancreatic and duodenal bicarbonate secre-
tion are presumably impaired by the disease,21 and the
duodenal pH is lower than normal.46 Combined with
the frequent prevalence of chronic lung disease, these
patients should be a high risk for peptic ulceration.
Clinical experience, and the literature, however, do not
support an increased incidence of peptic ulceration is
this population, but rather, it appears that the preva-
lence of peptic ulceration may actually be diminished.5
Our hypothesis that elevated cellular buffering power is
present when the CFTR is dysfunctional is supported
by independent observations: 1) resting pHi is elevated
in cells derived from individuals with a dysfunctional
CFTR47 and 2) the apical anion exchanger DRA, the
only other known apical exit pathway for bicarbonate,
is downregulated when the CFTR is dysfunctional,48,49

Fig. 3 The capsaicin pathway. Mucosal responses to luminal acid are
mediated by this pathway, which includes an acid sensor, which is a
vanilloid receptor, afferent nerves, and an effectors mechanism de-
pendent on the secretion of calcitonin gene-related peptide (CGRP)
and nitric oxide synthase (NOS). Prostaglandin synthesis is also
involved in the regulation of mucus gel thickness. Italics denote
inhibitors of each component.

Fig. 4 Dynamic regulation of mucus gel thickness in response to luminal acid. In the left panel, alkaline mucus secretion and the rate of
sloughing into the lumen are balanced. Luminal acid creates a sudden exocytotic burst of mucus secretion from goblet cells and Brunner’s
glands, which thickens the gel. The newly secreted mucus sloughs into the lumen at a higher rate, resulting in a new steady-state gel thickness.
Removal of luminal acid decreases mucus secretion, decreasing gel thickness, and also initiates synthesis of new mucus granules.
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which would support the concept that bicarbonate is
‘trapped’ in the cell in CF, raising pHi and increasing
cellular buffering power.

We propose that the impairment of duodenal bi-
carbonate secretion in the disease may explain why
this population may be protected from peptic ulcer-
ation. Recall that the CFTR and apical DRA are
needed for duodenal bicarbonate secretion. If the cells
can alkali load normally via a basolateral NBC1 and by
in-diffusion CO2 converted to HCO3

� by carbonic
anhydrase, but cannot secrete bicarbonate across the
apical membrane due to defective CFTR and DRA
functioning, cellular buffering may be abnormally high
due to the dysfunction of the two major apical bicar-
bonate exit pathways. This increased cellular buffering
power may then protect the epithelial cells from undue
acidification due to low luminal pH.

Summary and Conclusions

Study of the duodenal response to acid has yielded
fresh insights into how mucosal surfaces protect them-
selves from a hostile environment. Cellular alkali load-
ing in response to acid is plausible and fits well with the
existing body of data correlating ulcer disease with bi-
carbonate secretion, in that bicarbonate secretion is the
end result of alkali loading, although it may not, in and
of itself, be protective against acid. The alkali-loading
hypothesis also fits well with the clinical observation of
the sparing of CF patients from ulcer disease. Although
the signal for alkali loading may be decreased pHi,
enhanced blood flow and mucus secretion in response
to acid challenge rely on well-described pathways that
are present in many tissues,50–52 and serve as a use-
ful paradigm for epithelial responses to environmental
stimuli.

In the future, we plan to study the proposed two-step
mechanism (separate basolateral uptake and apical exit
processes) by which duodenal bicarbonate secretion
may occur. We also would like to rigorously test the
alkali-loading hypothesis in CF knockout and other
mouse models, and also to further study the duodenal
acid response. Other planned studies include the role of
the high CO2 duodenal luminal environment in mucosal
acidification. Through these studies, we hope to under-
stand how environmentally exposed epithelia deal with
potentially damaging conditions, with the hope that
further understanding and insight might be gained
about diseases that affect the gastrointestinal tract and
other epithelia.
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