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Abstract. Various classes of neurons in the mammalian central nervous system (CNS) migrate from

their sites of origin to their final positions, where they are arranged in elaborate laminar structures.

These precise patterns of neuronal alignment are disrupted in several human diseases and mouse

mutants. Among them, reeler, an autosomal recessive mouse mutant discovered half a century ago, has

been studied as a valuable material for investigations of neuronal layer formations. Recent identifica-

tion of a gene mutated in reeler (reelin), and subsequent characterizations of other genes underlying

mouse and human brain malformations have rapidly expanded our knowledge of the molecular pro-

grams underlying the normal brain layer formation. In this review, we summarize the cellular and

molecular mechanisms that establish highly ordered structures in the brain, in particular in the cerebral

cortex. (Keio J Med 52 (1): 8–20, March 2003)
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Introduction

The mammalian cerebral cortex is a highly ordered
structure. The different classes of neurons reside in an
organized radial array of six cellular layers ranging
from the pial surface to the white matter. During de-
velopment of laminated structures, neurons should mi-
grate in a coordinated series of patterns from their sites
of origin to their final positions, as neurons are usually
generated in sites distant from their final locations.

In the developing cerebral cortex, neurons are
mainly generated in the cerebral ventricular zone and
then move to the developing cortical plate via ‘‘radial
migration’’.1–4 In contrast, most GABAergic inter-
neurons originate in the ganglionic eminences and enter
the developing cortical plate via ‘‘tangential migration’’
in mice.5–8

The failure of migration leads to defects of cortical-
layer formation in several human diseases and mouse
mutants.9–11 However, the mutations of genes that are
the base cause of severe cortical dysplasias in humans
and mice have provided an entry point into the molec-
ular pathway that controls neuronal migration and cor-

tical layer formation. In this review, we focus on radial
migration, because most of the known mutants with
cortical layering defects are due to the disruption of
radial migration.

Development of the cerebral cortex

The mammalian cerebral cortex is constructed in two
distinct steps3,4,12 (Fig. 1). The first step of neocortical
development is the formation of the preplate or pri-
mordial plexiform layer above the ventricular zone.
The preplate is composed of afferent and efferent fibers
and the earliest generated neurons, including the Cajal-
Retzius cells and the subplate neurons.12 In the second
step, cortical plate neurons are generated in the ven-
tricular zone along the ventricle, and these earlier-born
neurons invade the preplate. Migrating neurons move
past the subplate, splitting this layer away from the
Cajal-Retzius cells. Therefore, the preplate is split into
a superficial marginal zone, in which the Cajal-Retzius
cells remain adjacent to the pial surface, and a deep
subplate. The late-born neurons are generated in the
ventricular zone and migrate radially, passing through
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the intermediate zone, then move past the subplate and
earlier generated cortical plate neurons. The systematic
migration of late-generated neurons past predecessors
results in the ‘‘inside-out’’ fashion of cortical layering,
in which the later generated cortical plate neurons are
located at more superficial positions than the earlier-
born neurons.1,13

Modes of radial migration

Two distinct modes of radial migration, locomotion
and somal translocation, have been reported (Fig. 2).
The locomotion cell migrates along a radial fiber of a
radial glial cell;2,14 which traverse the entire thickness
of the developing cerebral wall. Neurons migrating in
this mode have a characteristic bipolar cell-morphol-
ogy, with a thick leading process and a thin trailing
process, and the entire cell moves along the radial
fibers. In somal translocation, the cell has a long radi-
ally directed leading process that attaches to the pial
surface. The cell soma moves toward the leading edge,
which results in the shortening of the leading pro-
cess, while its terminal remains attached to the pial
surface.15–19 A recent time-lapse study of radially mi-

grating neocortical neurons revealed that each mode
of migration had distinct dynamics and occurred
preferentially at different developmental stages.18 At
embryonic day E12–13 in mice, neurons use somal
translocation to split the preplate, while at E15–16,
locomotion predominates to transverse the expanding
cortical plate. Although somal translocation occurs as a
continuous movement and does not need the radial glial
fibers, locomotion is interspersed by pauses and is de-
pendent on the radial glial fibers.

In contrast to the bipolar or monopolar morphology
of locomotion and somal translocation cells, histolog-
ical analyses of fixed sections of developing neocortex
using electron microscopy have demonstrated the exis-
tence of multipolar cells in the intermediate zone,20
which could not be explained simply by the locomotion
or somal translocation. Recently, Tabata and Naka-
jima established an in utero gene transfer system that
allows specific labeling of migrating cells in the devel-
oping cortex with GFP or red fluorescent protein
(DsRed).21,22 Using this system, we performed time-
lapse observations, and found that neurons dynamically
change their morphology and migration modes during
their journeys toward the pial surface (Tabata et al.,

Fig. 1 Development of the neocortex. The first step of neocortical development is the formation of the preplate (PP) above the ventricular
zone (VZ). In the second step, cortical plate neurons are generated in the ventricular zone, and these earlier-born neurons invade the preplate.
Continued migration splits the preplate into a superficial marginal zone (MZ), in which the Cajal-Retzius cells remain adjacent to the pial sur-
face (PS), and a deep subplate (SP). The late-born neurons are generated in the ventricular zone and migrate radially, passing through the
intermediate zone (IZ) which consists of pioneer axons, then move past the subplate and earlier generated cortical plate neurons (CP). The
systematic migration of late-generated neurons past predecessors results in the ‘‘inside-out’’ fashion of cortical layering, in which the later
generated cortical plate neurons are located at more superficial positions than the earlier-born neurons. In adulthood, a six-layered neocortex is
formed above the axonal tracts termed white matter (WM).
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in submission). These results imply that each neuron
migrates via a combination of several modes of migra-
tion, depending on the migration phase and the devel-
opmental stage. The existence of various migration
modes is important, as the responsible genes in defects
of neocortical-layer formation might be involved in
distinct modes of migration.

Defects of Cortical Layer Formation in Mice

The analysis of malformations in mouse brains has
led to dramatic progress in the identifications of genes
important for cortical layering. Among them, the most
studied and characterized is the reeler malformation in
mice.

The reeler malformation

Over 50 years, reeler (Relnrl), the spontaneous
mouse mutant, has been studied as an important ex-
perimental model. The reeler mouse exhibits an auto-
somal recessive mutation located on chromosome 5.23
The reeler mutation causes ataxic and reeling gait in
affected mice. Analysis of the central nervous system of
mutant mice revealed severe architectonic abnormities
in the cortical structures of the cerebrum, hippocampus,
and cerebellum.24–26 In addition to these anomalies
in the cortical structures, more subtle abnormalities in

cell clustering or in laminar organizations have been
reported in several subcortical structures, including the
amygdala, olfactory tubercle, olfactory bulb, inferior
olivary complex, dorsal cochlear nucleus, and facial
nucleus.27–31 Yip et al. showed that migration of sym-
pathetic preganglionic neurons is affected in the spinal
cord as well, although it had been generally thought
that neuronal migration was not disrupted in the spinal
cord of the reeler mutant.32 The reeler mutation has its
effect without impairing the survival or vitality of neo-
cortical neurons,33,34 and therefore has provided a
valuable model for investigations of neuronal layer
formations.

In the neocortex of the reeler mutant, the first cell
position defects arise at the splitting of the preplate.
The initial formation of the preplate proceeds nor-
mally.35,36However, the early-born cortical neurons fail
to invade the preplate, and the subplate remains adja-
cent to the marginal zone in a structure known as the
‘‘superplate’’.37 Subsequent cohorts of late-generated
neurons are unable to pass their predecessors, resulting
in an ‘‘outside-in’’ pattern of development.24,37 Conse-
quently, a disorganized cortical plate is formed under-
neath the superplate, with an indistinct and almost
inverted layering.

CR-50 and the reeler gene

The first material used to investigate the molecular
deficit in the reeler mouse was obtained in a unique
strategy. On the hypothesis that particular molecules
encoded by the reeler gene may mediate the presump-
tive interactions between the preplate and the forming
cortical plate neurons in normal mice, Ogawa et al.
generated a monoclonal antibody (CR-50) by immu-
nizing reeler mice with brain extracts from normal
mice.38 CR-50 recognized a distinct allelic antigen
present in normal but not in reeler mice, expressed
in the regions of normal mice where morphological
abnormalities occur in reeler mice. In the neocortex, the
CR-50 antigen was associated superficially with the
Cajal-Retzius cells. Importantly, several experimental
approaches revealed that CR-50 functions as a blocking
antibody in culture studies.38–40 In addition, Nakajima
et al. reported that intraventricular injection of CR50 at
the embryonic stage disrupted the normal development
of the hippocampus and converted it to a reeler pattern
in vivo.41 These lines of studies strongly suggested that
the mutation of the CR-50 antigen causes the reeler
phenotype.

On the other hand, a transgene insertion produced
another reeler allele (Relnrl-tg), providing a probe for
the reeler locus,42 which led to the isolation of the
candidate reeler gene.43 Positional cloning identified
the same candidate reeler gene at the same period.44,45

Fig. 2 Modes of radial migration. (1) The locomotion cell migrates
along a radial fiber of a radial glial cell; which traverse the entire
thickness of the developing cerebral wall. Neurons migrating in this
mode have a characteristic bipolar cell-morphology, with a thick
leading process and a thin trailing process. (2) In somal translocation,
the cell has a long radially directed leading process that attaches to
the pial surface. The cell soma moves toward the leading edge, while
its terminal remains attached to the pial surface. CP, cortical plate; IZ,
intermediate zone; VZ, ventricular zone.
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This gene was named reelin. No reelin mRNA was
detected in the two reeler alleles (Relnrl and Relnrl-tg).43
The reelin open-reading frame is 10,383 bases long,
encoding a protein composed of 3461 amino acids (aa)
which has a relative molecular mass of 388 K (Fig. 3).
An epitope of Reelin, defined near the N-terminus, was
shown to be recognized by CR-50.46 Considering the
functions of CR-50 as a blocking antibody, the defi-
ciency of Reelin was in fact indicated to be responsible
for the reeler phenotype.

The region more N-terminal to the CR-50 epitope
contains a cleavable signal peptide, followed by a re-
gion which has 25% identity with that of F-spondin.47
These first 500 aa of Reelin are succeeded by eight
‘‘Reelin repeats’’. Each Reelin repeat is composed of
350–390 aa and contains two related subrepeats A and
B, separated by an EGF-like motif of 30 aa.43 In these
sequences, Reelin resembles extracellular matrix pro-
teins.

Reelin was secreted when constructed full-length
reelin cDNA was transfected to COS cells, and deletion
analysis demonstrated that a short region of positively
charged amino acids near the C-terminus is required
for secretion of Reelin.46 In the reeler Orleans mutant
(Relnrl-Orl), Reelin is made but not secreted due to
the insertion of an L1 transposonable element that
alters the amino acid sequence of the C-terminus.48,49
Recently, it was shown that secreted Reelin molecules
tend to form a homophilic dimer.50 As Reelin-Reelin
interaction was inhibited by CR-50, CR-50 might neu-
tralize the Reelin function at least partly by inhibiting
the homophilic assembly of Reelin proteins.51

In the developing brain of normal mice, Reelin is

secreted from a subset of neurons, for example, by the
Cajal-Retzius cells in the cerebral cortex38 and hippo-
campus,41 and by granule cells in the cerebellum.39,52
Importantly, the Reelin-producing neurons are asso-
ciated with regions where first phenotypic defects of
neuronal migration are detected in reeler mice. The
spatial and temporal expression pattern suggested that
Reelin is important as the extracellular signal for
migrating neurons. This suggestion was confirmed by
subsequent reports of mutations in genes encoding
molecules that transmit Reelin signal.

Yotari, scrambler, and Dab1 (disabled 1)

A number of mutations that result in a brain pheno-
type similar to that of reeler have expanded our knowl-
edge of the Reelin signal cascade (Fig. 4). They include
yotari, an autosomal recessive mutant mouse which
appeared during the generation of null mice for the
gene encoding the receptor for inositol-1,4,5-triphos-
phate.53 Despite the reeler-like phenotypes in yotari,
alteration in Reelin expression was not observed.
Detailed investigations revealed that a long inter-
spersed nuclear element (L1) insertion caused the mu-
tation in the disabled 1 (Dab1) gene.54 This allele is
referred as Dab1yot, and another spontaneous mutant
mice scrambler (Dab1scm)55 with a mutation in the
Dab1 gene,56,57 or mice with a target disruption of
Dab1 (Dab1tm1Cpr) were also found to exhibit pheno-
types indistinguishable from those of reeler.58 Dab1
protein is drastically reduced in Dab1scm (@5% of the
wild type level of Dab1 protein), and not detected in
Dab1yot and Dab1tm1Cpr.56,58

Fig. 3 Schematic representation of the Reelin structure. Reelin is a secreted extracellular matrix protein composed of 3,461 aa with a relative
molecular mass of 388 kDa. The N-terminus of Reelin has 25% identity with that of F-spondin. These first 500 aa of Reelin are succeeded by
eight Reelin repeats. Each Reelin repeat is composed of 350–390 aa and contains two related subrepeats A and B, separated by an EGF-like
motif of 30 aa. CR-50 antibody is recognized upstream of the Reelin repeats, although this antibody clearly blocks several Reelin-mediated
phenomena both in vitro and in vivo.
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Dab1 encodes an intracellular adaptor or docking
protein originally identified as a Src-binding protein.59
The Dab1 p80 is predominantly expressed in neurons
in the developing CNS from one of several alterna-
tively spliced mRNAs, and it is tyrosine phosphorylated
during brain development. Near the N-terminus, Dab1
contains a region of approximately 150 aa known as a
protein interaction/phosphotyrosine binding (PI/PTB)
domain. The Dab1 PI/PTB domain binds to phos-
pholipid bilayers containing phosphatidylinositol 4P
(PtdIns4P) or PtdIns4,5P2 and to the unphosphorylated
sequence F/YXNPXY (in the single-letter amino-acid
code, where X is any amino acid), found in the cyto-
plasmic tails of five members of the low density
lipoprotein receptor (LDLR) family and of three
members of the amyloid precursor protein (APP) fam-
ily, and the cytoplasmic signaling protein Ship.60–62
Unlike other PTB domains, the Dab1 PTB does
not bind to tyrosine-phosphorylated peptide ligands
(NPXpY), and binds phospholipids in a manner that
does not interfere with protein binding.60 A cluster of
tyrosine residues downstream of the Dab1 PI/PTB
domain serves as docking sites for SH2 domain-
containing proteins such as the non-receptor type pro-
tein tyrosine kinases (PTKs), Src, Fyn, and Abl. Src
can phosphorylate Dab1 in vitro, and tyrosine phos-
phorylation of Dab1 promotes the interaction with
these PTKs.59 These structures of Dab1 imply that
Dab1 mediates protein-protein or protein-membrane
docking functions in kinase signaling cascades during
brain development.

The identical mutant phenotype of Reelin and Dab1
suggests that they are in a common signaling path-
way that regulates layer formation. In reeler, the major
populations of displaced neurons contain elevated
levels of Dab1 protein, although they express normal
levels of Dab1 mRNA.63 This suggests that Dab1
accumulates in the absence of a Reelin-evoked signal
and functions downstream of Reelin. In addition, Dab1
is tyrosine-phosphorylated in a Reelin-dependent man-
ner in primary cultured neurons,64 indicating that
Reelin regulates neuronal positions by stimulating
Dab1 tyrosine phosphorylation. Genetically, the
double-null mice for Reelin and Dab1 show no addi-
tional defect, supporting the concept that Reelin and
Dab1 are acting on the same signaling cascade.64

Certain tyrosines on Dab1 are responsible for the
Reelin signaling in vivo, as indicated by knock-in
mutation of all these tyrosines in mice, which caused a
brain phenotype that is identical to that of the reeler
mice.65 The major sites of Src-catalyzed phosphor-
ylation in vitro are also preferentially phosphorylated
by Reelin in primary cultures.65,66 These findings
suggest that Src family PTKs play important roles in
the Reelin-induced tyrosine phosphorylation of Dab1.

However, the mechanism by which Reelin induces
Dab1 phosphorylation is not yet known.67,68

Reelin receptors

After the discovery of Dab1 as a downstream mole-
cule of Reelin, the identification of receptors that
transmit the Reelin signal to intracellular Dab1 became
the major interest of the field. Genetics contributed
serendipitously again. The double-knockout mice lack-
ing both the very low density lipoprotein receptor
(VLDLR) gene69,70 and the apolipoprotein E receptor
2 (ApoER2) gene71–73 exhibit behavioral and neuro-
anatomical defects that are indistinguishable from those
of reeler mice.74 Moreover, Dab1 protein is increased in
the double knockout mouse, indicating an occurrence
of a failure in transmitting the Reelin signal. Biochemi-
cally, Reelin was demonstrated to bind to the ligand
binding domains of VLDLR and ApoER2.75,76 The
estimated Kd for the interaction was 0.5 nM,75 or 0.7
nM,76 suggesting a high-affinity interaction. The intra-
cellular domains of VLDLR and ApoER2 bind to Dab1
at least in vitro, implying the pivotal role of VLDLR
and ApoER2 in transmitting the Reelin signal to intra-
cellular Dab1.

VLDLR and ApoER2 are likely to function in con-
cert, but the presence of distinct functions is also plau-
sible. Mice lacking only VLDLR or ApoER2 exhibit
subtle but different defects, i.e., the deficiency in
VLDLR predominantly affects the cerebellum, whereas
a phenotype of the ApoER2 defect is obvious in the
cerebrum and hippocampus.74 Biochemically, the cyto-
plasmic domain of LDLR family members interacts
with various proteins implicated in the regulation of
mitogen-activating protein kinases, cell adhesion, vesi-
cle trafficking, or neurotransmission.77 ApoER2, but
not VLDLR, contains a unique insertion sequence of 59
amino acids in its cytoplasmic domain71 and binds to
the family of JNK-interacting protein (JIPs), which
act as molecular scaffolds for the JNK-signaling path-
way, and to rhoGEF, an exchange factor for the small
GTPase rhoA.78 This suggests that ApoER2 is able to
assemble to a multi-protein complex, which might par-
ticipate in Reelin signaling. Very recently, it has been
reported that JNK is important for neuronal migration
in the neocortex.79 These additional interactions might
explain the distinct phenotypes of mice lacking either
the VLDLR or ApoER2 alone.

Although the characterization of VLDLR and
ApoER2 as Reelin receptors has shed light on the
Reelin-Dab1 signal, the mechanism of Reelin-induced
Dab1 phosphorylation remains unclear. VLDLR and
ApoER2 do not possess intrinsic tyrosine kinase activ-
ity. Neither have they been shown to associate with
tyrosine kinase or phosphatases. One hypothesis is that
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Dab1 is tyrosine-phosphorylated by a coreceptor. It was
reported that Reelin binds to cadherin-related neuronal
receptors (CNRs),80 and a3b1 integrin81 in biochemi-
cal studies. As CNRs bind Fyn in their cytoplasmic
tails82 and Src associates with integrin-dependent
cytoskeletal complexes, both receptors could contrib-
ute to Reelin-induced Dab1 tyrosine phosphorylation.
Further studies are required to elucidate the complex
interactions between Reelin and its various receptors.
In particular, the functional importance should be
shown genetically in vivo.

How does Reelin regulate neocortical layering?

Despite the identification of molecules in the Reelin
signaling pathway, the response of cortical neurons to
the Reelin signal remains unclear.

Several lines of studies indicate that Reelin influen-
ces neuronal migration by altering the adhesive prop-
erties of neurons. In reeler mutants, early-born neurons
maintain abnormally extensive contacts with the radial
fibers and obstruct the movement of late-born neu-
rons.83 Neurons from reeler mice exhibit increased ad-
hesive properties in cell aggregation assays.84 Earlier-
born neurons from normal and reeler brains form
aggregates with different properties, probably reflecting
altered adhesion in reeler mice.38,85 In addition, a re-
cent study demonstrated that Reelin acts as a detach-

ment signal in chain-migrating interneuron precursors
in the olfactory bulb.86 Reelin might alter the adhesive
properties of neurons to release neurons from radial
fibers and/or to place them in distinct layers. The future
identification of molecular cues, for instance, the adhe-
sion molecules that interact with neurons within each
layer and their altered properties in reeler mice, will be
important to test this model.

Reelin was also suggested to detach neurons from
radial fibers by binding to a3b1 integrin, which regu-
lates neuron-glia interactions.81 The Reelin-binding
to these integrins has been thought to switch migrating
neurons from a gliophilic adhesive preference to a
neurophilic adhesive preference. However, the pheno-
types of mice lacking the b1 gene are quite different
from those of reeler, and a major role of b1 integrin in
the brain seems to be in establishing the integrity of the
pial basement membrane.87 To what extent the inhibi-
tory effects of Reelin binding to a3b1 contribute to
neuronal migration remains unknown.

The phenotypes of mutant mice that lack the C-
terminal region of Dab1 are interpreted in terms of
the ‘‘stop signal’’ model,88 but also consistent with the
‘‘detachment model’’. Unlike full length Dab1, a single
copy of the truncated gene does not support normal
migration of the CA1 pyramidal cell in the hippo-
campus and the late-born cortical plate neurons. In the
neocortex, the late-born neurons mistakenly enter layer
1, probably because they fail to receive the Reelin sig-
nal and over-migrate. It will be extremely interesting
to test the conditional ablation of Reelin or Dab1 dur-
ing late cortical development to verify the function of
Reelin on late-born cortical neurons.

With the aim of elucidating the Reelin function a
transgenic mouse was produced, in which an ectopic
expression system was used to target Reelin to the
ventricular zone under the control of the nestin
promoter/enhancer.89 In the presence of Reelin pro-
tein, ectopic Reelin did not alter cell migration. How-
ever, in the reeler background mice that express ectopic
Reelin, some, but not all, cortical neurons migrate past
the subplate in the presence of ectopic Reelin in the
ventricular zone. Consequently, subplate neurons were
split away from the Cajal-Retzius cells by the inser-
tion of a subpopulation of cortical neurons. From these
results, Reelin does not appear to function simply as a
stop signal or an attractant. Rather, ectopic Reelin was
thought to promote cell-cell interactions that are suffi-
cient for the preplate splitting. However, studies are
needed to elucidate where ectopic Reelin is secreted, as
a small amount of Reelin might be transported to the
marginal zone though the fibers and might influence the
splitting of the preplate.

The role of Reelin in promoting splitting of the pre-
plate may be distinct from its effect on lamination, as

Fig. 4 The Reelin signaling pathway. Binding of Reelin to cell sur-
face receptors results in tyrosine phosphorylation of Dab1. Src family
protein kinases (Src, Fyn, Abl) are potential candidates that phos-
phorylate Dab1. The Reelin signal is transmitted to Dab1 through a
very low density lipoprotein receptor (VLDLR) or ApoE receptor 2
(ApoER2). Cadherin-related neuronal receptors (CNRs) and a3b1
integrin are the candidates for co-receptors. Dab1 binds to the cyto-
plasmic tails of VLDLR and ApoER2 and to those of members of the
amyloid precursor protein (APP) family. Dab1 can bind to phospho-
lipids at the same time, including PtdIns(4,5)P2 which is a cofactor in
signaling to the actin cytoskeleton.
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laminar formation was not rescued despite the success-
ful prelate splitting in reeler mice that express ectopic
Reelin.89 Similarly, in the brains of chimeras consisting
of Dab1 mutant (Dab1�=�) and wild type (Dab1þ=þ)
cells, the preplate was split by Dab1þ=þ neurons, but
the Dab1�=� neurons could not pass the formed sub-
plate, indicating failure in splitting the preplate is not
the sole defect in Dab1�=� mutant (Dab1scm).90 Thus
Reelin might exert different influences on early- and
late-born neurons. Moreover, Reelin does not function
exclusively in layer formation. Reelin is thought to act
as a branching signal for the entorhinohippocampal
projections40 and for the glial processes in the hippo-
campus91. In addition, abnormalities in retinal synaptic
layering are also observed in reeler.92 Different subse-
quent intracellular signaling events evoked by Reelin-
Dab1 signal might underlie the specific responses.
Identifications of effector molecules are hoped to eluci-
date the roles of Reelin-Dab1 signal in each phase.

Cdk5/p35 and cross talk

Genetics has provided another group of mutant
mice that have defects of neocortical layer formation.
They include mice with a targeted disruption of cyclin-
dependent kinase 5 (Cdk5)93 or its regulatory subunit
p35.94 Cdk5 is a serine/threonine kinase, and unlike
other members of the Cdk family, its activity is detected
mainly in postmitotic neurons95 Association of Cdk5
with a neuron-specific regulatory subunit, either p35 or
its isoform p39, is critical for its kinase activity.96–98
Null mice for Cdk5 exhibit perinatal death associated
with cortical laminar defects,93 whereas mice lacking
p35 display a milder phenotype because of the redun-
dancy of Ckd5 regulatory subunits.94,99,100 Moreover,
p35 and p39 double mutant mice show a phenotype
identical to that of Cdk5 null mice, confirming that p35
and p39 are essential for Cdk5 function during brain
development.101

In mice that are null for either Cdk5 or p35, the
first cohort of migrating cortical neurons successfully
invades and splits the preplate.93,94,99,102 However, the
late-generated neurons are unable to migrate past their
predecessors and pile up in an inverted layer under
the subplate. Consequently, neurons are packed in an
‘‘outside-in’’ pattern, in an indistinct laminated struc-
ture. Despite similarities between the phenotypes of
the reeler mice and those of Cdk5 and p35 mutants,
differences are also apparent. For instance, the mar-
ginal zone (layer 1) is not present in the reeler mice and
present in Cdk5 and p35 mutants, albeit very thin in
Cdk5 mutants. The corpus callosum is largely intact in
reeler but diminished in Cdk5 and p35 mutants. Unlike
reeler, Cdk5 mutants die during the perinatal period,
while p35 mutants suffer from seizure activity. The

large neurons of Cdk5 mutants in the brainstem and
in the spinal cord show degenerative chromatolytic
changes, partly explaining the perinatal mortality.93

These differences imply that Reelin-Dab1 and Cdk5/
p35 have different roles in neuronal migration. Fur-
thermore, the double-null mice for p35 and Reelin/
Dab1 demonstrate more severe migration defects than
the single mutants, indicating that Cdk5/p35 and
Reelin/Dab1 act on the different signaling pathways.100
This is in contrast with the phenotypes in mutant mice
lacking both Reelin and Dab1 that resemble those of
the individual mutants of these genes.64

However, it is also obvious that Cdk5/p35 and
Reelin/Dab1contribute synergistically to neuronal mi-
gration, and biochemical studies suggest cross talk
between these pathways (Fig. 5). For instance, as
above-mentioned, Dab1 is phosphorylated by Src
family PTKs in vitro, and active c-Abl, a member of Src
family PTKs, leads to Cdk5 phosphorylation on tyro-
sine 15 (Y15), which stimulates p35/Cdk5 kinase activ-
ity. This phosphorylation is enhanced by Cables, a pro-
tein which exhibits limited homology to cyclin A,
suggesting that Cables may mediate the interaction
between Cdk5 and Dab1 by binding to both Cdk5 and
c-Abl.103 Fyn, another member of Src family PTKs,
also associates with Cdk5 and facilitates the activation
of Cdk5 through Y15 phosphorylation, coordinately
mediating neuronal guidance regulated by Semaphorin-
3A.104 Hyperphosphorylation of Tau, a microtuble-

Fig. 5 Cyclin dependent protein kinase 5(Cdk5)/p35 signaling. Cdk5/
p35 may regulate the dynamics of microtubules though phosphor-
ylating microtuble-associating proteins Tau, MAP2, and Nudel.
Associated with Nudel, mNudE, and dynein, lissencephaly 1 (Lis1)
interacts with the microtubules, probably in concert with Double-
cortin (Dcx). Cdk5/p35 also causes Pak1 hyperphosphorylation in a
RacGTP-dependent manner and modulates dynamics of the actin
cytoskeleton. Dab1 is serine-phosphorylated by Cdk5/p35. Active
Fyn and Abl can tyrosine-phosphorylate Cdk5, which is enhanced by
Cables.
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stabilizing protein and a substrate of p35/Cdk5, is
reported in mice that lack either Reelin or both
VLDLR and ApoER2, supporting the links between
Reelin signaling and p35/Cdk5.75 However, it is not yet
known whether Reelin signaling actually stimulates
p35/Cdk5 kinase activity in vitro or in vivo.

On the other hand, Dab1 itself is a substrate for
Cdk5, and is phosphorylated by Cdk5 on serine 491
in vitro and in vivo.105 As already mentioned above,
mutant mice that lack the C-terminal region containing
serine 491 show normal development, implying that
the C-terminal region might not be essential for Reelin
signaling.88 However, unlike full length Dab1, a single
copy of the truncated gene does not support normal
migration of the CA1 pyramidal cell in the hippo-
campus and late-born CP neurons. These results might
imply that the Dab1 C-terminus affects the strength of
Reelin signaling. Although Dab1 knock-in mice should
be made to assess the precise functional significance
of Dab1 serine phosphorylation, Cdk5 might serve to
modulate Reelin signaling.

How do p35/Cdk5 contribute to neuronal migration
and neocortical layering? Several studies indicate that
p35/Cdk5 may regulate actin/microtubule dynamics
(Fig. 5). The interactions between p35/Cdk5 and Rac/
Pak1 suggest that p35/Cdk5 may modulate dynamics of
the actin cytoskeleton in neurons.106,107 Microtuble
associating proteins Tau, MAP2, and Nudel are sub-
strates of p35/Cdk5.108–111 Additionally, p35/Cdk5 may
regulate cell adhesion by N-cadherin during cortical
development by binding to b-catenin.112

Defects of Cortical Layer Formation in Humans

In humans, the malformation due to abnormal
neuronal migration often appears as lissencephaly9
(‘‘smooth brain’’, from ‘‘lissos’’, meaning smooth, and
‘‘encephalos’’, meaning brain). Concerning lissence-
phaly, analogous mutations in mice have been pro-
duced by gene targeting in detailed investigations.

Type 1 (classical ) lissencephaly

In patients with type 1, or classical lissencephaly
(LIS), both agyric (convolution is absent) and pachy-
gyric (convolution is broad) regions have a characteris-
tic ‘‘four-layered’’ cortex, composed of (1) a molecular
layer, (2) an outer cellular layer (true cortex), (3) a cell-
sparse layer, and (4) a deep cellular layer composed
of heterotopic incompletely migrated neurons.113,114
Clinical manifestations are mainly epilepsy and mental
retardation. Two genes associated with LIS have been
cloned: lissencephaly 1 (Lis1, also known as Miller-
Dieker syndrome chromosome region, MDCR, or more
properly, the b subunit of platelet activating factor

acetylhydrolase, PAFAH1B1)115,116 and doublecortin
(Dcx, also known as XLIS).117,118 In more than 90%
of patients with Miller-Dieker syndrome (MDS) and
@40% of those with isolated lissencephaly sequence
(ILS), heterozygous mutations in the Lis1 gene are
observed.115,119 Dcx is responsible for X-linked ILS;
only hemizygous males develop X-linked ILS, and het-
erozygous females have a subcortical band of hetero-
toipia (SBH).117 Whereas the brain malformation due
to Lis1 mutations was more severe over the parietal
and occipital regions, Dcx mutations produced the re-
verse gradient, which was more severe over the frontal
cortex.119 The distinct LIS patterns suggest that Lis1
and Dcx may work in a partly overlapping, but distinct
manner, in human neuronal migration.

To further address the function of Lis1, mutant
alleles in mouse Lis1 were produced.120 Lis1 null
mice die soon after implantation, indicating that Lis1
is an essential gene. Lis1 heterozygotes show cell-
autonomous delayed neuronal migration. Cortical de-
velopment progressed in a normal inside-out fashion,
but formed cortical layers are indistinct. Further
reduction of Lis1 activity displays more severe brain
disorganization, suggesting a dosage-sensitive role in
neuronal migration. Lis1 contains a WD (tryptophan-
aspartic acid) repeat, and interacts with multiple pro-
teins, including an ATP-driven microtubule motor
dynein121–124 and Nudel/mNudeE.110,111,125 These
interactions have profound effects on the microtubule
structure of a cell, and may play central roles in micro-
tubule dynamics for nuclear movement, cellular trans-
port, and migration. Furthermore, Nudel is a substrate
for Cdk5 and is regulated by Cdk5/p35 to modify neu-
ronal morphology.110,111 However, a precise model for
how these interactions are regulated during brain de-
velopment is still unclear and further investigations are
required.

A mouse carrying a targeted mutation in the Dcx
gene has also been created.126 Hemizygous male Dcx
mice, however, show neocortical lamination largely
indistinguishable from the wild type and show normal
patterns of neocortical neurogenesis and neuronal mi-
gration. Migrating neurons in the human brain may
have a greater dependence on Dcx function than mice.
Proteins homologous to Dcx, such as DCAMKL1,127
may suffice to support migration in the Dcx mutant
mouse. As Dcx binds to microtubules and stimulates
the polymerization of purified tubulin,128,129 Dcx
seems to regulate the organization of microtubules in
cooperation with Lis1.

Whereas hemizygous Dcx mutations and hetero-
zygous Lis1 mutations produce lissencephaly and pro-
found neocortical disorganization in humans, analogous
mutations in mice cause more subtle (in the case of
Lis1) or negligible (in the case of Dcx) neocortical
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defects. Perhaps in humans, in whom cortical neurons
transverse a much longer absolute distance than in mice
during brain development, migrations are more subject
to various impairments, resulting in more severe dis-
organizations.

Type 2 (cobblestone) lissencephaly

Type 2 or cobblestone lissencephaly is the common
brain abnormality seen in some types of congenital
muscular dystrophies (CMDs), in which abnormal neu-
ronal migration results in a brain with a bumpy, cob-
blestone appearance and loss of the normal folding
pattern.130 In cobblestone lissencephaly, the pia is dis-
rupted and discontinuous, and through the gaps cortical
neurons migrate over the outer surface of the pia,
forming piles of neurons.

Two of these for which human gene mutations have
been found are Fukuyama congenital muscular dys-
trophy (FCMD) and muscle-eye-brain disease (MEB).
The FCMD gene fukutin,131 shares homology with
fringe-like glycosyltransferases, and the MEB gene,
POMGnT1, seems to be a new glycosyltransferase.132
Very recently, it was reported that reduced (¼hypo)
glycosilation of a-dystroglycan is involved in these two
diseases, as well as in a spontaneous mouse mutant, the
myodystrophy (myd) mouse.133 In the myd mouse, a
mutation in the LARGE gene, which is thought to en-
code another glycosyltransferase, has been linked to a
muscular dystrophy phenotype. The hypoglycosylation
of a-dystroglycan results in impairment in the binding
components of the basement membrane and disruption
of the pia. Moreover, brain-selective deletion of dys-
troglycan in mice is sufficient to cause CMD-like brain
malformation, convincing proof of the role of dystro-
glycan in stabilizing the pial basement membrane.134

Similar cortical dysplasias are also found in mice with
targeted disruption of the basement membrane pro-
tein hepalan sulfate proteoglycan Perlecan,135 of the
nidogen-binding site of Laminin g1,136 of a6 inte-
grin,137 and of a brain-specific b1 integrin.87 In all
mutants, including human CMDs, the continuity of the
pial basement membrane is disrupted, accompanied by
cortical dysplasia. Perlcan, Nidogen1, and Laminin1
are distributed in the pial basement membrane, while
Laminin receptors a6 integrin and b1 integrin are
expressed in the developing neocortex, implying that
the interaction between the pia and neocortex is indis-
pensable for normal neuronal migration, as well as the
continuity of the pial basement membrane.

Lissencephaly caused by mutation in the reelin gene

The nomenclature for lissencephaly with cerebellar
hypoplasia (LCH) is only now evolving, and comprises

six broad classes, LCHa-f, that are grouped according
to their distinguishing features.10,138 Among them, it
has recently been reported that an autosomal recessive
form of human lissencephaly (LCHb) was mapped to
chromosome 7q22 and was associated with two inde-
pendent mutations in the human gene encoding reelin
(RELN ).139 This distinctive pattern possesses a mod-
erately thickened cortex and pachygyria, markedly ab-
normal hippocampal formation, and severe cerebellar
hypoplasia with absent folia.139,140 Some humans with
reelin mutations show a severe delay in neurological
and cognitive development, accompanied with epi-
lepsy.139

Additionally, some patients show abnormal neuro-
muscular connectivity and congenital lymphedema, and
one showed accumulation of fatty ascites fluid that
required peritoneal shunting.139 These unsuspected
symptoms might reflect Reelin functions via LDL re-
ceptor families outside the brain.

Concluding Remarks

Recent genetic studies have provided detailed infor-
mation about molecules important for neuronal migra-
tions over a relatively short period of time. On the
other hand, direct observation of migrating neurons is
expanding our knowledge of the different behavior of
migrating neurons in the formation of the cortex. In the
coming years, it is hoped that these molecular and cel-
lular approaches will work together to rapidly elucidate
the mechanisms that regulate cortical layer formations,
the basis of the elaborate networks in the brain.
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