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Abstract. It is unlikely that human hepatocytes can be isolated on a scale sufficient to treat more than

a fraction of the patients who need bioartificial liver (BAL) treatment. The use of animal cells results in

the concerns related to the transmission of infectious pathogens and immunologic and physiologic

incompatibilities between the donor and humans. Human embryonic stem cells and bone marrow

multipotent adult progenitor cells have received great attention as a possible source for BALs. The use

of tightly regulated clonal hepatocyte cell lines would be attractive. Such cell lines grow economically

in tissue culture and provide the advantage of uniformity, sterility, and freedom of pathogens. In this

paper, the authors review the choice of cells for BALs and discuss our reversible immortalization sys-

tem of human liver cells using a retroviral transfer of immortalizing genes and subsequent Cre/ loxP-

mediated site-specific recombination. (Keio J Med 52 (3): 151–157, September 2003)
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Introduction

Acute liver failure (ALF) is often life threatening and
dramatically diminishes the quality of life of patients.1
Orthotopic liver transplantation has become a suc-
cessful therapy for ALF, but this procedure is highly
costly, limited by the scarcity of donor livers and asso-
ciated with high morbidity and mortality.2 There is a
compelling need for developing effective alternatives
for patients with ALF. Considering the potential of the
liver to regenerate, temporary support with bioartificial
livers (BALs) is an attractive approach.3,4 Since tech-
nologies of tissue cell culture and biomaterials have
been greatly advanced, many designs of BALs, includ-
ing (1) a biological component, (2) a bioreactor, and (3)
a whole blood or plasma perfusion system are currently
under investigation. In the present review, we focus on
cell choice for developing BALs.

In vitro and in vivo experiments for BAL development

As shown in Tables 1 and 2, many researchers have
made great efforts to develop BALs using various types

of cells in different modules.5–43 For in vitro experi-
ments rat hepatocytes were favorably used and pig
hepatocytes were often utilized for in vivo BAL studies.
Considering BALs developed for humans, possible cell
choice is limited, including normal human adult and
fetal hepatocytes, in vivo transformed human hepato-
cytes, porcine hepatocytes, human-derived stem cells,
and reversibly immortalized human hepatocytes.

Normal human hepatocytes

Although normal human livers are an ideal source
of cells for BAL therapy, donor liver shortage is
severe world-wide and the availability of the liver for
hepatocyte isolation is unfortunately limited by compe-
tition for the use in whole organ transplantation. Strom
et al. demonstrated the usefulness of human fetal hep-
atocytes for cell therapies because of their proliferative
capacity and differentiation potential, but the use of the
fetal hepatocytes raises an ethical issue.44 On the basis
of results from liver surgery in humans, it is estimated
that approximately 10% to 30% of residual liver
parenchyma would be required to support the life of
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patients.45 Thus, it seems to be difficult to provide the
fetal hepatocytes in such a large scale.

In vivo transformed human hepatocytes

Human hepatocytes should be ideally the optimal
biological component in BALs, however, this approach
is impractical due to the shortage of human livers.
Sussman et al. used a human differentiated hepato-
blastoma cell line C3A as a source of the ELAD.3 In
the literature, the C3A retains differentiated hepatic
functions while showing a short population doubling
time and contact inhibition. Patients underwent ELAD
with whole-blood perfusion continuously for relatively
long periods of time.3 In the initial group of 10 patients,
no significant effect on the outcome in patients with
ALF was noted, with only one survivor. The ELAD
therapy was further tested at King’s College Hospital
in London, with no significant evidence of metabolic
support and no beneficial effect on patient survival.13
However, leakage of these tumor-derived cells into the
patient’s circulation on unexpected device failure re-
mains a major concern in such a compromised host.
In fact, the extracapillary passage of HepG2 cells,
which are similar to C3A, from a hollow fiber mem-
brane was observed in vitro BAL experiments.39

Porcine hepatocytes

In 1994, Nyberg et al. reported that primary hep-
atocytes outperformed all available liver cell lines in

Table 1 In Vitro BAL Experiments

Investigator Cell type Evaluation

Wolf and Munkelt5) Reuber hepatoma cells Bilirubin conjugation
Hager6) Mouse Ureagenesis, protein synthesis, diazepam metabolism
Kasai7) Dog Maintenance of ATP
Demetriou8) Rat Bilirubin synthesis and conjugation, protein synthesis, diazepam metabolism
Jauregui9) Rat
Yanagi10) Rat and rabbit Ammonia removal, urea synthesis, cyclosporine metabolism
Moscioni11) Human
Shatford12) Rat Albumin synthesis, amino acid and lidocaine clearance
Sussman and Kelly13) C3A cells Glucose utilization, albumin synthesis
Nyberg14) Rat Synthesis of albumin and urea, lidocaine metabolism, arginine clearance
Li15) Rat Urea, albumin synthesis
Rozga16) Rat Cyclosporine and 19-nor-testosterone metabolism, bilirubin conjugation
Fremond17) Rat
Kong18) Pig Lidocaine, ethoxyreso-rufin metabolism
Bader19) Rat Cyclosporine and rapamycin metabolism
Gerlach20) Pig Amino acid and keto-acid metabolism
Morsiani21) Pig Cholate metabolism
Kobayashi22) Immortalized human hepatocytes Clearance of NH3
Linti C23) Pig P450-dependent metabolic function (MEGX test)

Table 2 In Vivo BAL Experiments

Investigator Cell type Evaluation

Matsumura24) Rat Albumin synthesis
Olumide25) Pig Neurologic improvement
Kasai7) Dog Improved survival
Uchino26) Pig Improved survival
Yanagi10) Rabbit Clearance of NH3
Arnaout27) Rat Bilirubin conjugation
Shnyra28) Rat Improved survival
Nyberg14) Rat Albumin synthesis
Sussman29) C3A cells Improved survival
Takahashi30) Pig Improved survival
Fremond17) Rat Bilirubin conjugation
Rozga31,32) Dog, Pig Clearance of NH3 and lactate
Gerlach33) Pig Clearance of NH3
Jauregui34) Rabbit Clearance of diazepam and

lidocaine clearance, improved
survival

Dixit35) Pig Improved survival
Chen36) Pig Improved survival
Suh37) Rat Improved coagulopathy and

survival
Stevens38) Pig Improved survival
Mazariegous39) Pig Hemodynamics (transient

hypotension and
thrombocytopenia)

Millis40) C3A cells
Abrahames41) Pig Elimination of phenylephrine,

reduction of dopamine and
respiratory support

Ambrosino42,43) Pig, Matrix LDH leakage, NH3 clearance,
urea synthesis, 7-ethoxycoumarin
O-deethylase (ECOD) activity
and pseudocholine esterase
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terms of bio-transforming functions.46 The result
prompted investigators to use porcine hepatocytes to
develop BALs. In addition, pigs have similar physiol-
ogy to humans and one porcine liver can provide
enough hepatocytes for several BAL treatments.
Demetriou et al. started Federal Drug Administration
(FDA) approved clinical trials using a porcine hep-
atocyte-based BAL system (HepatAssist, Circe Bio-
medical Inc., Lexington, MA, USA) since 1994.47 They
have used plasma separation and BAL perfusion for 6
hours and patients tolerated the treatments well.

They have mentioned that porcine hepatocytes have
a tendency to form cell aggregates, resulting in the
maintenance of differentiated hepatic functions.47 Re-
garding the clinical studies using xenogenic cells, the
potential hazard of pathogens from porcine-derived
organs raises a new issue of xenozoonosis. Concern has
particulary increased regarding xenozoonotic infection,
since porcine endogenous retroviruses (PERV) were
reported to infect human cells.48–50 The phase II/III
trial using HepatAssist in 171 patients was conducted
and the 30-day survival was reported to be 70% for
a BAL-treated group and 60% for a control group
receiving standard medical therapy (personal commu-
nication with Dr. Demetriou AA, Cedars-Sinai Medical
Center, LA, USA). Surviving patients were retrospec-
tively examined for the presence of PERV and there
was no evidence of viral transmission from pigs to
humans. The data were encouraging in developing
clinical therapies using porcine hepatocytes, however,
needless to say, we should collect pertinent results re-
garding the safety of xenogenic porcine tissues and cells
in the future.

Human-derived stem cells

Regenerative medicine using stem cell biology is
attracting great attention. Strategies for regenerative
therapy using a stem cell system are roughly partitioned
into: 1) the use of organ (or tissue) stem cells, 2)
the use of embryonic stem (ES) cells, 3) the use of
dedifferentiation/transdifferentiation of differentiated
cells. Therapeutic designs should be determined based
on a comprehensive consideration of the available in-
formation. Differentiation of human ES cells and mul-
tipotent adult progenitor cells (MAPCs) in the human
bone marrow into hepatocytic cells are reviewed here.
ES cells are undifferentiated stem cell lines established
from the epiblasts that are present in the inner cell mass
of an early embryo at the blastocyst stage. Epiblasts
differentiate into the developmental process and they
are capable of differentiating into the three germ layers.
Thus, ES cells can be induced to differentiate into vari-
ous types of cells under specific culture conditions. Hu-
man ES cell lines were established by Thomson et al. in

1998 and, therefore, have been a focus of regenerative
medicine and received attention as a potential source
for BAL.51 Investigators at Geron Corporation (Menlo
Park, CA, USA) have currently shown that human ES
cells can be differentiated into hepatocytic cells in vitro
under the presence of sodium butyrate in the culture
medium.52 The expression of albumin, cytokeratin 8,
anti-alpha trypsin, and glycogen is positive in such dif-
ferentiated cells. Catherine et al. have identified the
presence of MAPCs in the mouse, rat, and human bone
marrows and demonstrated that MAPCs differentiated
into the functional hepatocytic cells with producing al-
bumin and urea in the hepatocyte growth factor (HGF)-
and basic fibroblast growth factor (bFGF) based culture
medium.53 These cells would be a candidate for devel-
oping BALs, however, one should keep in mind that
neither transdifferentiation or dedifferentiation of such
cells in BAL modules can be guaranteed. Stem cell bi-
ology should be well characterized in the near future to
facilitate BAL therapies.

Reversibly immortalized human hepatocytes

Concerns about porcine hepatocytes include xeno-
zoonosis and immunologic and physiologic incompati-
bility with the human host, while human cell-lines ex-
pose patients to the potential risk of releasing tumor
cells or tumorigenic products from the BAL device into
their circulation.54,55 The utilization of stem cells in
humans will need some time to clearly address the
stem cell biological system. To overcome these prob-
lems, we have focused on reversible immortalization
of human hepatocytes to intentionally control the pop-
ulation expansion. A tightly regulated system for cell
growth should be considered to generate immortalized
hepatocyte cell lines that are suitable for clinical use.
Thus, we applied a Cre/loxP site-specific recombination
system. DNA sequences intervened by loxP recombi-
nation targets can be excised after expression of Cre
recombinase.56 The Cre/loxP system has been widely
used to control gene expression in transgenic mice.
In order to provide stringent control over expression
of transforming genes, we immortalized human hep-
atocytes with retroviral vectors SSR#69 (for expressing
SV40T)57 and SSR#197 (for expressing human telo-
merase reverse transcriptase (hTERT))58 with select-
able positive and negative markers, which were inter-
vened by a pair of loxP recombination targets and
subsequently excised by Cre/loxP site-specific recombi-
nation, as illustrated in Fig. 1. Using SSR#69, we estab-
lished a reversibly immortalized human hepatocyte cell
line NKNT-3.59

The ability to measure in vitro differentiated func-
tions is extremely dependent on culture conditions and,
for oncogene-transformed cells, there is evidence that
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an improvement in differentiated cellular responses
can be accomplished simply by serially transferring
the cells into animals.60,61 Thus, we performed intra-
splenic transplantation of NKNT-3 cells treated with
Cre recombinase, reverted NKNT-3 cells, in a rat model
of liver failure. Transplantation of the cells significantly
prolonged the survival of the rats. Extension of this
procedure to other cell types presenting in the human
liver allows studies of cell-cell interaction and further
contributes to the development of cell therapies and
BALs.62 One of our long-term goals is the develop-
ment of BAL systems that closely mimic the function of
the normal liver in vivo. Pure cultures of hepatocytes
recapitulate several key liver functions but fail to pro-
vide adequate levels of a few important detoxyfying
enzymes that include the cytochrome p450 associated
enzymes (CYPs). Among the known crosstalk between
hepatocytes and other liver cells, hepatic stellate cell
(HSCs) are believed to play an essential role.63,64 Pre-
vious attempts to develop BAL have focused on the
hepatocyte biosynthetic function, ignoring the retic-
uloendothelial role performed by liver sinusoidal lining
cells. Recently, heterotypic cell interactions between
parenchymal cells and nonparenchymal neighbors have
been recognized to be central to the function of many
organ systems. In both the developing and mature
adult liver, cell-to-cell interactions are imperative for
coordinating the sophisticated liver functions.65 There-

fore, we have applied the Cre/loxP system to human
liver endothelial cells and hepatic stellate cells.58,62 We
have found that the co-culture of NKNT-3 cells with
SSR#197-immortalized hepatic stellate TWNT-1 cells
increased CYP3A4 and CYP2C9 expression. The find-
ing supports the contention that heterotypic cell inter-
action is of importance to enhance the production of
liver specific enzymes by hepatocytes in vitro.66,67 Be-
cause newly developed drugs are still screened for their
safety and efficacy in animal models, BALs of multiple
cell composition should become an attractive platform
as an alternative to animal testing. Provision of the bile
drainage system is also an important issue to develop
novel BALs. To address the issue, we have currently
established a human cholangiocyte cell line MMNK-1.
The MMNK-1 cells showed the expression of cytoker-
atins 9 and 17 and cholangiogenic potential in a Matri-
gel. Development of a coculture system of hepatocytes
and MMNK-1 cells is now under investigation.68 The
application of BALs that we are currently developing
includes: 1) Bridge use until organ transplantation is
available or hepatic regeneration is completed, 2) Pre-
vention of hepatic encephalopathy of patients with
decompensated liver cirrhosis, 3) Models for drug test-
ing, and 4) Development of new cellular products. The
use of Cre/loxP-based reversible immortalization rep-
resents an important step in the development of a po-
tentially novel strategy for resolving the organ shortage
that currently limits the use of healthy human hep-
atocytes for BALs. This technology may be applicable
to a variety of somatic cells and could potentially be
utilized to treat a large fraction of clinically significant
pathologic conditions.

Redundant safeguards in the reversibly immortalized
human hepatocytes

A method to protect patients from the possible
migration of cells utilized in BALs is to introduce sui-
cide genes into the cells. The cells modified to contain
a herpes simplex virus-thymidine kinase gene (HSV-
TK) become sensitive to the treatment with an anti-
viral agent ganciclovir (GCV), whereas normal cells
are unaffected by the drug.69 GCV is converted into
nucleotide-like precursors that kill cells containing
HSV-TK by blocking DNA synthesis. Since GCV does
not interact with human thymidine kinase, it is not toxic
to most human tissues lacking HSV-TK. A cytosine
deaminase gene can be utilized as a suicide material.70
5-fluorocytosine (5-FC) at the therapeutic doses is not
toxic to normal cells, but the cells expressing cytosine
deaminase convert 5-FC to 5-fluorouracil (5-FU). Then,
5-FU is further metabolized to produce suppression of
cell growth and cell death by inhibition of RNA and
DNA syntheses.

Fig. 1 Illustration demonstrating reversible cell immortalization. We
utilized retroviral vectors SSR#69 and SSR#197 to immortalize human
liver cells. After Cre/ loxP site-specific recombination, the intervening
DNA segment between the two loxP recombination targets can be
excised (LTR, long terminal repeat; SV40T, simian virus 40 large T
antigen; hTERT; human telomerase reverse transcriptase; IRES, in-
ternal ribosomal entry site).
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Prospect of the future of BAL therapy

Kjaergard et al. have currently performed a sys-
tematic review to evaluate the effect of artificial and
bioartificial support systems for acute and acute-on-
chronic liver failure.71 They have concluded that ar-
tificial support systems reduce mortality by 33% in
acute-on-chronic liver failure compared with standard
medical therapy and that artificial and bioartificial sup-
port systems did not appear to affect mortality in ALF.
Precipitating factors in ALF include drug toxicity and
viral hepatitis, which are difficult to treat. This may
explain why support systems are effective in acute-on-
chronic liver failure but not in ALF. Based on their
review, currently available BALs cannot be effective
enough in patients with ALF. Thus, it would be im-
portant to treat such patients not only with a new type
of a highly functional BAL in which hepatocytes will
be utilized in conjunction with non-parenchymal liver
cells and extra cellular matrices but also with currently
available viral therapies.

Conclusion

The goal of BAL therapy is to replace whole-liver
transplantation in patients with an acutely devastated
liver. Toward this goal, integration of cell culture and
gene transfer technology and the cutting wedged-bio-
technology is urgently required for the development of
sophisticated BAL systems that mimic the in vivo liver.
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