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Abstract. Chicken ovalbumin upstream promoter-transcription factors (COUP-TFs) are one of the

most characterized orphan receptors of the steroid/thyroid hormone receptor superfamily. COUP-TFs

play important roles in the regulation of organogenesis, neurogenesis, and cellular differentiation dur-

ing embryonic development. COUP-TFs were generally considered to be repressors of transcription,

however, there are growing evidences that COUP-TFs can function as transcription activators. Here

we will review the molecular mechanism of COUP-TFs as repressors and activators. Also, we will

review the known biological function of COUP-TFI during development and differentiation. (Keio J

Med 52 (3): 174–181, September 2003)
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Introduction

The nuclear receptor superfamily comprises a large
group of ligand-activated transcription factors, includ-
ing receptors for steroids, retinoids, and thyroid hor-
mones.1 Also included are a large number of structur-
ally and functionally related transcription regulatory
proteins termed orphan receptors, for which specific
ligands have not been defined. Chicken ovalbumin
upstream promoter-transcription factor (COUP-TF) is
one of the most extensively studied orphan receptors.
Two genes called COUP-TFI (also termed EAR3) and
COUP-TFII (also termed ARP-1) have been identified
in mammals. These are closely related transcription
factors that are expressed in many places and are
involved in the regulation of several important biologi-
cal processes, such as neurogenesis, organogenesis, cell
fate determination, and metabolic homeostasis.1–8 Both
genes show an exceptional homology and overlapping
expression patterns, suggesting that they may serve re-
dundant functions. However, each factor possesses its
own distinct expression profile during development.8
This review will focus on the advances that have been

made towards understanding the molecular mechanism
of COUP-TF actions and biological function of COUP-
TFI during development and differentiation.

Molecular Mechanism of COUP-TF Actions

Repressor

COUP-TFs homodimerize or heterodimerize with
retinoid X receptor (RXR) and a few other nuclear
receptors and bind to a variety of response elements
that contain imperfect AGGTCA direct or inverted
repeats with various spacings.9,10 Although COUP-TF
was originally characterized as a transcriptional activa-
tor of the chicken ovalbumin gene,11 COUP-TFs are
generally considered to be repressors of transcription
for other nuclear hormone receptors such as retinoic
acid receptor (RAR), thyroid hormone receptor (TR),
vitamin D receptor (VDR), peroxisome proliferator-
activated receptor (PPAR), and hepatocyte nuclear
factor 4 (HNF4).10,12,13 There are four mechanisms
that account for the repressive effects of COUP-TFs
(Fig. 1).
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The competition for occupancy of the binding sites:
COUP-TFs have been shown to bind to a variety of di-
rect repeats, including DR1, DR3, DR4, and DR5 of
the AGGTCA motif, which are response elements of
PPAR, VDR, TR, and RAR, respectively.14–16 It has
been demonstrated that COUP-TFs repress the hor-
monal induction of target genes by PPAR, VDR, TR,
and RAR in transient transfection assays through direct
competition with VDR, TR, and RAR for the avail-
able binding sites.14,15 The repression is released by
increasing the expression of RAR, which suggests that
COUP-TFs negatively regulate retinoid responses by
competing for binding to the retinoid response ele-
ments of the target reporter. COUP-TFs have also
been demonstrated to interfere with the transactiva-
tion of TR, RXR, and PPAR through a similar mecha-
nism.14–16 In addition, COUP-TFs have been shown
to inhibit the transactivation of steroidogenic factor 1
(SF1) and HNF4 due to mutually exclusive binding to
the promoter of many genes.17–19 Finally, COUP-TF
has been shown to antagonize ER activation of the lac-
toferrin and oxytocin promoters by binding to a bind-
ing site that overlaps with the estrogen response ele-
ment.17,20

The competition for RXR: It is well known that
RXR is a universal heterodimeric partner of RAR, TR,
VDR, PPAR, and other orphan receptors.6 Homo-
dimers of RAR, TR, VDR, and PPAR either bind
poorly or not at all to their cognate response elements.
The heterodimeric receptors can bind to the cognate
response elements with high affinity through association
with RXR, thus, enhance the transactivation potential
of this group of receptors. Because the direct repeat

recognition sequence is asymmetric, it has been shown
that RXR occupies the 5 0 half-site while the other
partner binds the downstream 3 0 half-site, which con-
fers the hormone responsiveness.6 RXR can also bind
to DR1 elements as a homodimer and as a heterodimer
with RAR and PPAR. The RXR homodimer is an
activator that responds to 9-cis-retinoic acid. RXR/
PPAR heterodimers respond to both 9-cis-retinoic acid-
and PPAR-specific ligands. However, RAR/RXR het-
erodimers, in which RAR binds to the 5 0-half-site of
DR1 element, are transactivationally inactive. It has
been shown that RAR and TR bind to a corepressor
[either silencing mediator for retinoid and thyroid hor-
mone receptors (SMRT) or nuclear receptor core-
pressor (N-CoR)] in the absence of hormone.21,22
Binding of these corepressors is necessary for receptors
to silence the promoter activity. Upon binding hor-
mone, the corepressor is released, and, thus, silencing
activity of receptors is abolished. However, when RAR/
RXR binds to DR1, the retinoic acid ligand is not able
to release the corepressor from RAR; therefore, RAR/
RXR heterodimer is not able to activate the DR1 re-
porter.23

Although COUP-TFs exist in solution as homo-
dimers and fail to form stable heterodimers with RXR
in coimmunoprecipitation assays,10,24 they readily form
DNA-binding heterodimers with RXR.10,15,16 There-
fore, COUP-TFs are able to sequester the common
heterodimerization partner RXR and reduce the avail-
able concentrations of RXR.10,14–16,25 The loss of
RXR indirectly decreases the DNA-binding affinity of
TR, VDR, RAR, and PPAR and thereby interferes
with the potential of this subgroup of receptors to
transactivate their target genes.14,15,26 This notion is
further verified by the relief of COUP-TF inhibition
when RXR is overexpressed.14 In addition, it has been
demonstrated that COUP-TFs form heterodimers with
TR and RAR and disrupt their functions.13,27,28 Thus,
the ability of COUP-TFs to form heterodimers with
RXR, TR, and RAR may contribute significantly to the
negative regulatory role of COUP-TFs in modulating
hormone responsiveness of a large number of receptors
of the TR and RAR subfamily.6

Active repression: Similar to unliganded nuclear hor-
mone receptors, COUP-TFs have been shown to re-
press basal transcriptional activity of a number of thy-
midine kinase reporters containing DR3, DR4, or DR5
hormone response elements.10,14 This silencing of basal
transcriptional activity is response element specific and
is unlikely due to squelching of TFIIB, which interacts
with COUP-TFs or other general transcription factors,
since reporter genes lacking COUP-TF binding sites
show little COUP-TF-mediated repression.13 Subse-
quently, it has been demonstrated that COUP-TFs,

Fig. 1 Molecular mechanism of COUP-TFs as repressors. DR: di-
rect repeats, HRE: hormone response element, MHC: major histo-
compatibility complex, ApoAI: apolipoprotein AI.
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similar to TR and RAR, possess an active silencing
domain within the C terminus of the putative ligand
binding domain (LBD). This repressor domain can be
transferred to a heterologous GAL4 DNA binding do-
main (DBD) and can be shown to retain its ability to
repress basal transcriptional activity.

In addition, Leng et al. have shown that COUP-TFs
can function as an active repressor in a dose-dependent
manner to inhibit transactivation mediated by acidic
(Gal4-RII), glutamine-rich (Gal4-ftzQ), proline-rich
(Gal4-CTF1P), and Ser/Thr-rich (Gal4-ZenST) trans-
activators.13 The active repressor function of COUP-
TFs is position independent, i.e. the binding sites of
COUP-TFs can either be localized upstream of the
activator binding site or downstream of the reporter
gene without significantly affecting the active repres-
sion. The fact that COUP-TFs can repress such diverse
groups of transactivators suggests that it is unlikely due
to COUP-TFs directly quenching these transactivators
or interfering with their interaction with their respec-
tive targets. Rather, it is likely that COUP-TFs interact
with a common target, a putative corepressor(s) that
mediates their repression. Shibata et al. demonstrated
that corepressors are involved in COUP-TFI-mediated
gene silencing, and that both N-CoR and SMRT can
function as corepressors for COUP-TFI in mammalian
cells.29 Therefore, COUP-TFI can function as a re-
pressor in vivo by utilizing corepressors that are com-
mon for members of the TR and RAR subfamily. In
addition, it was discovered that in adenovirus type 12
transformed cells, COUP-TF associates with histone
deacetylase through its C-terminal repression domain
and that this association apparently plays an important
role in the down-regulation of major histocompatibility
complex (MHC) class I transcription.30 Thus, COUP-
TFs can repress transcription through a mechanism
similar to that described for nuclear receptors RAR/
RXR or TR/RXR, which associate with histone deace-
tylases in the absence of their specific ligands.31

Transrepression: COUP-TFs can also repress tran-
scription by directly binding to the LBD of nuclear
hormone receptors, a process called transrepres-
sion.13,32 Leng et al. have demonstrated that COUP-
TFI represses transcriptional activity induced by fusion
proteins between the GAL4 DBD and LBD of TR,
RXR, or RAR. Based on these results, they proposed
a mechanism for transrepression by COUP-TFs invov-
ling heterodimerization of COUP-TF proteins with
other nuclear hormone receptors, such as TR, RAR,
or RXR.13 Therefore, COUP-TFs can be tethered to
DNA in the absence of their cognate response ele-
ments via LBD-LBD interactions with other receptors
such as TR, RAR, and RXR to transrepress the ligand-
dependent transactivation of the nuclear receptors.

Also, Achatz et al. reported that transrepression is the
predominant mechanism underlying repressor activity
of ARP-1/COUP-TFII, and this mechanism most likely
involves interaction of protein with one or several tran-
scriptional coactivator proteins which are employed by
various liver-enriched transactivators such as HNF-4,
HNF-3, and C/EBP but not by ubiquitous factors such
as Sp1 or ATF.32

Activator

COUP-TFs can also function as positive regulators
for many different genes. Positive regulation by COUP-
TFs can be carried out by at least three different mo-
lecular mechanisms of activation of gene expression by
COUP-TFs (Fig. 2). First, COUP-TF activates tran-
scription by binding to a nuclear receptor DNA re-
sponse element and directly activating gene expression.
For example, COUP-TFII stimulates the transcriptional
activity of the rat cholesterol 7a-hydroxylase (CYP7A)
promoter by binding to the nucleotide sequence located
between �74 and �54 (relative to the transcription start
site), which contains a direct repeat of two hormone
response element half-sites separated by 4 nucleotides
(a DR4).33 Similarly, in the arrestin gene promoter, a
DR-7 element mediates the positive transcriptional ef-
fect of COUP-TF.34

Second, COUP-TF activates transcription by binding
to a DNA element and indirectly influencing expression

Fig. 2 Molecular mechanism of COUP-TFs as activators. 1: direct
activation by binding to DNA response element, 2: indirect activation
by acting as accessory factors for transcription activation, 3: activation
through protein-protein interaction with a DNA-bound factor. DR:
direct repeats, AF: accessory factor elements, CYP7A: cholesterol 7a-
hydroxylase, PEPCK: phosphoenolpyruvate carboxykinase.
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in the context of several other transcription factors, as
in the phosphoenolpyruvate carboxykinase (PEPCK)
gene glucocorticoid response unit (GRU).35,36

Finally, COUP-TF activates transcription through
protein-protein interaction with a DNA-bound factor,
such as with HNF-4 in the HNF-1a gene promoter,37
with Sp1 in the trout estrogen receptor,38 the phos-
phoenolpyruvate carboxykinase,35 the vHNF1,39 the
human immunodeficiency virus long terminal repeat,40
and NGFI-A41 genes.

Based on three different molecular mechanisms of
gene activation by COUP-TFs, Sugiyama et al. have
characterized the domain required for COUP-TF-
mediated transcriptional activation of PEPCK gene and
have determined that SRC-1 and GRIP1 bind to this
domain and serve as coactivators.42 Similarly, for the
NGFI-A gene, COUP-TF enhances transcription by
recruiting coactivator SRC-1 through its interaction
with Sp1.41

Recently, Metivier et al. studied the molecular basis
underlying the positive action of COUP-TFI on ERa
activity and suggested a novel pathway in which the
formation of a tight ERa-COUP-TFI intermediate
complex through COUP-TFI DBD and ERLBD re-
sulted in an increased recruitment of ERK2/p42MAPK,
phosphorylation of the hERa on Ser 118 and enhanced
its transcriptional activity.43

COUP-TFs can act as repressors or activators of
gene expression. However, the mechanisms underlying
functional duality are unknown. Some of this functional
duality might depend on the repertoire of coregulator
proteins which interact with COUP-TF. Evidence sug-
gests that the function of many nuclear hormone re-
ceptors is dependent upon, or modulated by, the actions
of both common and distinct receptor binding cofactors
that differentially recognize liganded and unliganded
receptors.21,22,44–49 Most of the auxiliary factors so
far identified act as corepressors (e.g. N-CoR, SMRT,
TRUP, and TRIP1). However, in a few cases, receptor-
selective, positively acting coactivators (e.g. RIP140,
SRC-1, and CBP/p300) have been identified. Marcus
et al. have identified a factor that bound COUP-TFII
in vitro and allowed COUP-TFII to act as a transcrip-
tional activator in mammalian cells. This factor is a
recently reported ligand of the tyrosine kinase signaling
molecule p56 lck. These results, if proved to be correct,
suggest that this factor mediates cross-talk between
mitogenic and nuclear hormone receptor signal trans-
duction pathways.50 In addition, the bifunctional activ-
ity of COUP-TF may also depend on the promoter
contexts of target genes. In this respect, a recent
paper describes that corepressor SMRT functions as
a coactivator for TR from a negative hormone re-
sponse element.51 The mechanism on how this works is
not clear.

Biological Function of COUP-TFI During
Development and Differentiation

The molecular biology and expression studies have
revealed several possible functions of COUP-TFs dur-
ing development and differentiation. Here we will con-
centrate our review on COUP-TFI and describe several
of its physiological functions (Fig. 3).

The role of COUP-TFI in neurogenesis

COUP-TFI and COUP-TFII3 have been extensively
studied, both in terms of biochemical properties and
tissue distribution, with a particular emphasis on de-
velopmental processes.9 In all the species that were
examined for the presence of COUP-TF during devel-
opment (from sea urchin to mouse), expression of this
orphan receptor was clearly associated with neuro-
genesis.34,52–56 Connor et al. demonstrated that COUP-
TFI overexpression resulted in decreased contact sta-
bility between neurites and substrate cells and sug-
gested COUP-TFI is involved in the regulation of cell-
cell contacts.57 Recent studies using gene targeting
suggest that COUP-TFI is involved in modulation
of axonal growth.58,59 Indeed, targeted disruption of
mouse COUP-TFI results in decreased arborization of
spinal nerves,58 in abnormal morphogenesis of the
ninth cranial nerve and ganglion,58 and in defects in the
guidance of axons emanating from thalamic neurons
that normally project to cortical layer IV.59 Finally,
disruption of COUP-TFI in mice results in the improper
brain regionalization. These results strongly suggest
that COUP-TFI is an important component in the reg-
ulation of neurogenesis and cellular differentiation
during embryonic development in several organisms.

Several studies have pointed out the possibility that
COUP-TF genes could be part of retinoid signaling
pathways both in vivo and in cell culture systems.60–63
Notably, up-regulation of COUP-TFI and COUP-TFII
genes occurs during the differentiation programs in-
duced by retinoic acid (RA) in mouse teratocarcinoma

Fig. 3 Biological functions of COUP-TFI during development and
differentiation.
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cells such as P19 embryonal carcinoma (EC) cells.61
Pluripotent P19 EC cells can be induced to differenti-
ate into all three germ layer derivatives (i.e. ecto-
derm, endoderm, and mesoderm) when appropriate
inducers and culture conditions are used.64–66 When
P19 cells are grown as aggregates, RA induces a
neuroectodemal-like differentiation pathway.64 There-
fore, P19 cells have been widely used to screen for
genes involved in neuronal differentiation.67–69 Adam
et al. studied the functional involvement of COUP-
TFI in RA-induced neuronal differentiation of P19
cells through two approaches: 1) deregulated expres-
sion of COUP-TFI, and 2) inactivation of endogenous
COUP-TF by means of a dominant negative COUP-
TFI mutant. They reported that a too early (or too
high) expression of wild-type COUP-TFI impedes neu-
ral differentiation and inhibition of endogenous COUP-
TF by expression of a dominant-negative COUP-TFI
mutant results in a strengthening of cell-cell contacts,
decreased axonal growth, and slower migration of neu-
rons. These data provide evidence that COUP-TFs are
regulators of cell adhesion mechanisms required for the
differentiation of embryonal carcinoma.70

The role of COUP-TFI in neocortex regionalization

Regionalization of the cerebral cortex can be divided
into at least two steps: (1) an early regionalization
phase in which cortical neurons establish their regional
identity through regulating gene expression in a cell-
autonomous manner and (2) a refinement phase in
which extrinsic influences from subcortical areas,
including thalamocortical inputs, shape and maintain
the cortical subdivisions. Recent studies showed that
neocortical regional identity was shifted in Pax6 and
Emx2 mutant mice, indicating that Pax6 and Emx2 are
two such intrinsic factors that regulate the regional ex-
pression of marker genes and specify cortical iden-
tity.71,72 Zhou et al. studied the role of COUP-TFI in
early neocortical regionalization and demonstrated that
COUP-TFI is required for the region-specific expres-
sion of many marker genes, as well as the precise axo-
nal projections between the thalamus and the cortex.
These data indicate that COUP-TFI is a regulatory
factor that works in concert with Pax6 and Emx2 to
specify cortical identity.73

The role of COUP-TFI in organogenesis

Retinoids are known to regulate the expression of
Hox genes, which play a major role in pattern forma-
tion and bone morphogenesis.74–76 Because COUP-
TFI is hypothesized to antagonize retinoid function and
its expression is known to be regulated by retinoids, it is
of interest to assess whether loss of COUP-TFI function

in the null mutants will affect bone formation. Qiu et al.
reported that the left or the right exoccipital bone is
prematurely fused to the basioccipital bone in 98% of
the COUP-TF1 null mutants.58 This result suggests that
COUP-TFI plays a major role in the development of
these bones.

In addition, several other abnormalities including
malformation of hippocampus, faulty axon myelination,
and inner ear defects were also observed in the COUP-
TFI null mutants.58 These results strongly suggest that
COUP-TFI is a crucial component in the regulation of
cellular differentiation during embryonic development
in several organs.

Future Directions

Further characterization of COUP-TFI activity in
vivo and analysis of its target genes will allow a better
understanding of its role in development and differen-
tiation. Moreover, the role of COUP-TFI beyond the
embryonic stage is very intriguing and remains to be
elucidated. The discovery by Brian Sauer that the Cre
recombinase of bacteriophage P1 could be used to
rearrange the eukaryotic genome suggested a mecha-
nism that would remove the restriction against intro-
ducing a mutation specifically into somatic cells.77 The
first report of the successful application of this ap-
proach, inactivating the DNA polymerase b gene in T
cells, was published in 1994.78 Two lines of mice are
required for the Cre-loxP approach to work. In one
line, the targeted allele is flanked by two loxP se-
quences, which target the flanked region for excision by
the Cre recombinase. In another line, the expression of
Cre is controlled by a tissue-specific promoter. Crossing
the two lines of mice leads to an animal lacking the
gene only in tissues that express Cre, while leaving the
gene functional in all other tissues. The advantages of
such a system are obvious: the function of genes neces-
sary for fetal development can be preserved, allowing
the function(s) of the gene to be examined during
adulthood. The perinatal lethality of COUP-TFI null
mutants limit the study of the function of COUP-TFI
after birth. Therefore, the future generation of condi-
tional knockouts using Cre-loxP system to delete
COUP-TFI gene in a particular cell or tissue of interest
will lead to a better understanding the role of COUP-
TFI.
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