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Abstract. This lecture discusses two interrelated topics, B cell tolerance in the peripheral immune

system and BAFF. Using the 3-83 antibody transgenic mouse bred to mice carrying cognate antigen

in the liver, we previously found that clonal elimination drastically reduced the precursor frequency

of autoreactive cells. The consensus model to explain this tolerance is the 2-signal hypothesis, which

proposes that in the absence of T cell help BCR stimulation is a negative signal for B cells. However,

this model fails to explain how these same B cells can respond to T-independent type II (TI-2) anti-

gens, raising the question of how they distinguish TI-2 antigens from multimeric self determinants. We

propose that B cells use NK-like missing self recognition to provide the needed specificity, as foreign

antigens are unlikely to carry self markers. The model has implications for the evolution of the immune

system, B lymphocyte signaling, tissue specificity of autoimmunity, and microbial subversion of the

immune system. Overexpression of the critical B cell survival cytokine BAFF/BLyS has been asso-

ciated with autoimmunity. We have discovered a novel splice isoform that regulates BAFF activity and

may play a role in limiting B cell activity. The novel form, called DBAFF, is able to heteromultimerize

with normal BAFF and can suppress receptor binding and proteolytic release from the cell surface.

Preliminary studies from transgenic mice overexpressing wild type or DBAFF are consistent with a

possible regulatory role for DBAFF, raising the possibility that the relative expression levels of BAFF

and DBAFF regulates tolerance. (Keio J Med 53 (3): 151–158, September 2004)
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Introduction

A new theory of self/non-self discrimination in mature
B cells

A coherent theory to explain mature B cell respon-
siveness and tolerance does not exist. A number of lines
of evidence indicate that mature B cells are tolerizable.
The consensus model to explain this tolerance is the 2-
signal hypothesis,1 which proposes that in the absence
of T cell help BCR stimulation is a negative signal for B
cells, leading to death or functional inactivation. How-
ever, these same B cells can respond to T-independent
type II (TI-2) antigens, which have the properties of
high multivalency and an absence of T cell determi-
nants. (TI-2 antigens by definition lack intrinsic mito-
genicity and therefore likely do not activate toll-like

receptors.) Indeed, responses to TI-2 antigens can occur
normally in T cell deficient mice. These considerations
raise the question of how B cells can distinguish TI-2
antigens from multimeric self determinants.

A competing alternative to the 2-signal model,
initially suggested by Lederberg, is that tolerance sen-
sitivity of B cells is dependent on the age of the indi-
vidual; cells from immature individuals are tolerance
sensitive, whereas those of adults are activatable only.
Work of several laboratories has indeed indicated that
recently formed splenic B cells or neonatal B cells may
be especially susceptible to tolerance induction.2 Un-
like newly formed bone marrow B cells,3–5 these cells
do not appear to undergo efficient receptor editing, but
are tolerized through an apoptotic process.6 In addi-
tion, the ability of B cells to respond to TI-2 antigens is
acquired relatively slowly after birth.7 While transi-
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tional B cells are more easily tolerized in some experi-
mental situations, mature B cells are clearly tolerizable
in vivo, at least in the case of some experimental ligands
such as anti-IgD, lysozyme or MHC class I.8–13 Given
that these tolerizable cells are able to respond to TI-2
antigens, despite the high multivalency of TI-2 antigens
and their ability to evoke antibody responses even in
the total absence of T cells,14–15 it is not clear how TI-2
antigens avoid inducing tolerance and promote activa-
tion. In an attempt to resolve this paradox, we have
recently proposed the hypothesis that B cells use NK-
like missing self recognition to provide the self/non-self
discrimination needed to distinguish foreign TI-2 anti-
gens from multivalent self.16

‘‘Missing self’’ recognition is believed to be an im-
portant aspect of natural killer (NK) cell signaling.17 In
NK cells, several receptors are expressed that can stim-
ulate activation of killer function.18 These activatory
receptors are counteracted by the signaling of more
numerous inhibitory receptors. Both activating and in-
hibitory receptors often recognize MHC class I mole-
cules or related structures. Because of the balance of
signals mediated by these receptors, NK cells can be
activated under physiological conditions by target cells
that lose the expression of a subset of self MHC mole-
cules. This is the basis for such phenomena as hybrid
resistance, which is the ability of an F1 hybrid of two
inbred strains to reject parental bone marrow grafts
through NK-mediated killing. NK recognition is thought

to be important for killing of infected or defective host
cells, which may lose MHC class I expression as part of
a microbial strategy or tumor selection to hide from the
CD8 cytotoxic T cells of the adaptive immune system.

As illustrated in Fig. 1, we propose that unlike
foreign antigens, self antigens, even those that are dis-
played in a multimeric array, are associated with one
or more widely expressed ‘‘self markers’’ that are
capable of stimulating a B cell’s inhibitory receptors.
Putative self markers would include particular carbo-
hydrate moieties, such as Siaa2-6Galb1-4GlcNAc, the
widely expressed host ligand for the B cell-restricted
inhibitory receptor CD22. Another established class of
self markers is the MHC class I antigens; B cells carry at
least one cell surface inhibitory receptor with apparent
reactivity to MHC class I molecules, PirB, but its func-
tional significance is unknown. Interestingly, both PirB
and CD22 genes have strong homology to NK inhibi-
tory receptors (KIRs) and their genes are located in the
genome adjacent to the major KIR homology cluster in
both human (chr 19q13) and mouse (chr 7), within the
leukocyte receptor cluster (LRC).19 Upon activation,
PirB and CD22 proteins are phosphorylated at immu-
noreceptor tyrosine inhibitory motifs (ITIMs; consensus
[L/I/V/S]xYxx[L/V]) and recruit the tyrosine phospha-
tase SHP-1,20–23 a mode of action essentially identical
to the authentic NK inhibitory receptors.24 Other B cell
receptors with inhibitory function also map to the LRC
region, including LAIR and CD66a.19 Additional in-

Fig. 1 TI-2 Ags (A) may be distinguished from self (B) by a second marker on self cells. Receptors for the putative second signal could be
expressed by soluble factors in the plasma, by putative non-T-cell leukocyte ‘‘helpers,’’ or, as indicated here, by the B-cell itself.
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hibitory receptors on B cells that contain ITIM motifs
and recruit SHP-1, SHP-2 or SHIP-1 phosphatase
activities include PD-1, FcgRIIb, CD72, CD31 and ad-
ditional members of the FcR superfamily.25–30 There-
fore, B cells express a diversity of inhibitory receptors
similar to those of NK cells that may participate in
‘‘missing self’’ recognition.

In contrast to their expression of a multiplicity of
NK-like inhibitory receptors, B cells do not appear
to express any NK-like activatory receptor except
the BCR itself. Activatory receptors on NK cells are
similar to BCR and TCR in their modes of intracellular
signaling. Like the antigen receptors, activatory NK
receptors do not have intrinsic signaling function; they
are transported to the plasma membrane with signal
transducer proteins.18 The transducers themselves are
small dimeric transmembrane proteins with conserved
cytoplasmic immunoreceptor associated tyrosine acti-
vatory motifs (ITAMS); consensus: [D/E]xxYxx[L/
I]xxxxxxxYxx[L/I].31 These ITAM motifs are sites of
tyrosine phosphorylation and recruitment of ZAP70
and or syk protein tyrosine kinases. Signal transducers
for T cells, NK cells, and myeloid cells include CD3
z; g; d; e, DAP12 and FceRIg. B cells lack these trans-
ducers, but express the related heterodimer Iga/b.
Interestingly, like the NK cell ITAM-containing trans-
ducer DAP12, Iga is encoded near the KIR locus at
19q13.2. Iga and Igb are required both for B cell anti-
gen receptor transport to the plasma membrane and
coupling of antigen recognition to the signaling ma-
chinery of the cell through cytoplasmic ITAM motifs.31

A common feature of activatory receptors is the
presence in the transmembrane region of polar or
charged amino acid residues (usually K or R) that in-
teract with a residue of opposite charge (D or E) in a
chain of one of the associated transducers.18–31 A con-
sequence of this design is that expression of functional
activatory receptors is restricted by transducer expres-
sion and specificity of association. Because Iga and
Igb do not appear to directly associate with activatory
receptors other than sIg (nor to dimerize with other
transducers), the lack of expression in B cells of trans-
ducers besides Iga/b insures that B cells cannot use non-
immunoglobulin activatory receptors, even those that
are expressed inside the cells, such as PirA.32 In con-
trast, NK and myeloid cell types express multiple
transducers that convey signals from a broader array
of receptors. For example, NK cells express CD3z and
FceRIg in addition to DAP12. Some activatory recep-
tors, such as NKp46, interact with all of these trans-
ducers, while others associate solely with particular
homodimers of DAP12 (human KIR2DS) or FceRIg
(mouse NKR-PI)18; NKp46 can also signal through
CD3z-FceRIg heterodimers. In any case, the suppres-
sion by B cells of alternative signal transducers along

with the specificity of Iga/b for association with sIg
appears to insure that a single type of activatory recep-
tor, the BCR, is functional in B cells.

We therefore propose that in the evolution of the
adaptive immune system, B and T lymphocytes sup-
pressed expression of innate activatory receptors after
the invention of V(D)J recombination, but retained
the recombining activatory receptor, along with a sig-
nificant collection of inhibitory receptors (Fig. 2). One
vestige of the proposed NK origin of lymphocytes is the
focus of NK and CD8 T cells on similar MHC class I
antigens. A second vestige is the continued expression
on a subset of T cells of the NK activatory receptor
NK1.1, which in part defines the NKT cell.33 (Upon
activation, CD8 cells express a different type of NK
receptor associated with the PI3K-recruiting adapter
DAP10).34 This hypothesis may also help explain odd
NK-like features sometimes seen in lymphocytes that
promote monoallelic distribution of receptors, such as
parental imprinting of the PirB gene.35

The notion that B cells express inhibitory recep-
tors that recognize widely expressed self ligands has
numerous implications for immune tolerance and auto-
immunity. It is well known that tissues protect them-
selves from the toxic effects of antibody-mediated com-
plement activation by expressing various regulators of
the complement system, such as CD46, CD55 and

Fig. 2 Hypothetical evolutionary progression differentiating lym-
phocyte function from its primordial NK activity, to NK and adaptive
lymphocyte subsets. Shapes in gray represent inhibitory receptors,
those in white, activatory receptors. The model suggests that with
the invention of V(D)J recombination at a midpoint in evolution, a
subset of lymphocytes discontinued expression of most or all non-
rearranging activatory receptors, increasingly focussing on the rear-
ranging activatory receptors BCR or TCR, while retaining multiple
inhibitory receptors.
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CD35; such inhibition works at the effector phase of
antibody responses.36 We suggest that the role of self
marker expression by tissues is in part to suppress the
initiation phase of such antibody responses through en-
gagement of inhibitory receptors on B cells.

However, tissues may differ in their expression levels
of self markers because there are likely to be multiple
self markers and cognate receptors involved in the tol-
erance process. This heterogeneity, coupled with allelic
variation in self markers such as MHC class I mole-
cules, may lead to a situation in which in certain indi-
viduals particular tissues are more vulnerable than
others to a breakdown in tolerance. This target tissue
component of immune tolerance may explain how even
general defects in lymphocytes can lead to tissue spe-
cific autoantibody disease.37 A second hypothetical
contributor to autoantibody disease could be aberrant
expression of non-BCR activatory receptors on B cells.
For example, aberrant expression of FceRIg and
FcgRIII in mature B cells is predicted to result in B
cell hyperreactivity. Interestingly, these receptors are
expressed by early progenitors of T and B cells, but are
normally turned off with maturation.38

Pathogenic microbes have evolved means to sup-
press antibody responses. One way they can do so is to
produce ligands for inhibitory receptors. The human
cytomegalovirus is known to produce a pseudo MHC
class I ligand UL18 that engages not only NK inhibitory
receptors, but also the B cell inhibitory receptor ILT2,
the human homologue of PirB.39–40 B cells and phag-
ocytes recognize sialic acid moieties on self cells using a
number of inhibitory receptors of the so called Siglec
family.39 B cells may express as many as 5 different
Siglecs, including CD22.39 Because the ability to pro-
duce sialic acids is a relatively recent evolutionary in-
vention, lacking in most non-deuterostome organisms,
it is significant that several pathogenic bacteria have
independently evolved or captured the enzymatic ma-
chinery to do so from their hosts.39 This bacterial
adaptation should suppress antibody responses early
in infection, prior to the development of robust T cell
help. Another potential way that microbes could per-
turb the B cell system is to introduce activatory signal-
ing that is independent of the BCR. This is known to
occur in the case of two viruses, Epstein-Barr virus
of humans and Bovine leukemia virus, which encode
ITAM-containing proteins that can promote cell acti-
vation, growth and survival of infected cells.41 Such
dysregulation probably promotes B cell neoplasia.

The regulation of B cell survival by BAFF

In the preceding section, we have proposed that B
cell recognition of self by inhibitory receptors, a cell
intrinsic mechanism, facilitates the self/non-self dis-

crimination. The outcome of BCR signaling leading to
B cell anergy, activation, survival or death will reflect
thresholds of positive and negative signals, along with
extrinsic signals that shift these thresholds. Table 1 lists
genes expressed in B cells or non-B cells whose over-
expression or deficiency is implicated in promoting
autoimmunity and breakdown in B cell self-tolerance.
In transgenic models where autoreactive B cells have
been studied, the fate of autoreactive cells is dependent
on the presence of competing, non-autoreactive B cells,
indicating that B cells compete for a limiting survival
factor.42–43 As we discuss below, a key B cell survival
factor whose overexpression is implicated in humoral
autoimmunity is BAFF.

Most B cells require at least two signals to survive
in the peripheral immune system: intrinsic expression
of BCR (i.e., activatory receptor) on the cell surface44
and extrinsic availability of the TNF family cytokine
BAFF.45 Furthermore, BCR and BAFF signaling are
also important in the TI-2 antibody response.46,47BAFF
overexpression in vivo promotes autoimmune lupus-
like disease and potentiates antibody responses.47–50
On the other hand, mice deficient in BAFF or the
BAFF receptor (BAFF-R) lack long-lived follicular B
cells and are hyporesponsive to immunization and ger-
minal center maturation.48,51–53 BAFF also interacts
with two other receptors, TACI and BCMA, which are
also able to bind to APRIL, BAFF’s closest homologue.
Importantly, treatment of lupus-prone mice or a mouse
model of collagen-induced arthritis with soluble Fc
fusion proteins of TACI, which binds to BAFF, can
reduce disease incidence and severity.51 On a normal,
non-autoimmune background, short-term treatment

Table 1 Genes Implicated in B Cell Toler-
ance or Autoimmunity

B cell intrinsic References
Fas
Cr2 (CD21/CD35)
CD40
FcgRII
Lyn
SHP-1
CD22
Bcl-2
Bim
TLR9
TACI

(59)
(60, 61)
(62, 63)
(64)
(65–67)
(68, 69)
(70, 71)
(72)
(73, 74)
(75)
(76)

B cell extrinsic
FasL
Complement C1q, C4
CD40L
IL-4
BAFF
Tlr4 (LPS)

(77–79)
(80, 81)
(63, 82–84)
(62, 85, 86)
(50, 87, 88)
(89)
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with BCMA-Fc fusion protein reduced B cell numbers
by two-fold.54 Because overexpression or underexpres-
sion of BAFF has pathogenic consequences, it is likely
that natural antagonists of BAFF action exist.

We recently identified a novel splice isoform of
BAFF that exists in both mouse and human.55 This
form, which is called DBAFF because it lacks a 57-bp
exon, appears to be abundant in quiescent macro-
phages, while the full-length form predominates in
activated macrophages, in which total BAFF levels are
greatly induced. Furthermore, DBAFF can assemble
disulfide-linked complexes both with itself and with
wild type BAFF. Interestingly, unlike full length BAFF,
DBAFF fails to be efficiently cleaved from the cell
membrane. These features, along with the ability of
DBAFF coexpression to limit BAFF bioactivity in a
mouse model system, suggest that DBAFF may play a
role in limiting antibody, and autoantibody, responses.
DBAFF may modulate BAFF activity by hetero-
trimerizing with newly made BAFF to affect receptor
specificity or potency, or by preventing efficient release
of BAFF from the plasma membrane. Alternatively, or
in addition, DBAFF may heterotrimerize with other
TNF family molecules, such as APRIL, which may
suppress B cell response or survival through TACI or
BCMA signaling. We have begun to probe these possi-
bilities using a transgenic overexpression strategy.

Method

Transgenic constructs were generated by introducing
BAFF or DBAFF cDNA sequences downstream of
a 2.9 kb human CD68 promoter.56 The human CD68
promoter construct has been used in transgenic mice
to generate myeloid specific expression.56 Vector
sequences were removed and isolated insert DNA was
microinjected into [(DBA/2XC57Bl6/J)F1 X (C3H/

HeJXC57Bl6/J)F1] zygotes. Young adult mice were
analyzed for plasma immunoglobulins by solid phase
ELISA assay. Flow cytometry analysis was used to
quantify the numbers of B lymphocyte subsets in the
lymphoid organs of young adult offspring of founder
mice bred to C57Bl6/J. A detailed description of the
transgene constructs and transgenic mouse character-
ization will be presented elsewhere (Gavin, et al. in
preparation).

Results

Disparate in vivo biological effects of BAFF and DBAFF

We have compared the in vivo functions of BAFF
and DBAFF in a series of transgenic mice expressing
BAFF or DBAFF under the control of the human CD68
promoter, which drives expression in myeloid and den-
dritic cells, where BAFF is normally expressed.56 As
shown in Fig. 3, several independent founder lines car-
rying BAFF transgenes have roughly 100-fold increased
levels of IgA, but only @10 fold higher levels of IgM
and marginal increases in IgG. In contrast, DBAFF
transgenics lack elevated (or reduced) IgA levels rela-
tive to wild type. While preliminary, this finding sug-
gests that BAFF may have an especially significant,
selective adjuvant effect on humoral mucosal immune
responses. In addition, DBAFF transgenics manifested
a reduced level of plasma IgG2a/b and reductions in
overall B cell numbers, particularly in the spleen where
marginal zone B cell numbers were much lower (Table
2).

Discussion

While our analyses of BAFF and DBAFF trans-
genic mice are still quite preliminary, our results are

Fig. 3 BAFF transgenic (Tg) mice, but not DBAFF transgenics, have preferential augmentation of serum IgA levels. Independent male
founder mice transgenic for BAFF, DBAFF, or non-Tg controls were tested for serum levels of IgM, IgA, IgG1, and IgG2a/b.
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consistent with other studies indicating that BAFF
overexpression can increase B cell numbers, and pref-
erentially augment IgA and, to a lesser extent, IgM se-
rum levels.57 Of greater novelty were the results using
the DBAFF expressing transgene. We had guessed
that mice expressing this construct should suppress the
effects of wild type BAFF, resulting in a phenotype
resembling BAFF-deficient mice.48 Our results seem to
confirm the prediction that DBAFF expression partly
neutralizes BAFF activity, because the DBAFF over-
expressing mice had the predicted reductions in B cell
numbers. However, little reduction in serum IgM or
IgA levels was seen relative to wild type mice. In con-
trast, IgG2a/b levels were reduced in DBAFF trans-
genic mice. These results may suggest a role for DBAFF
in regulating isotype switch, antibody forming cell sur-
vival, or the expression of other cytokines that regulate
these processes. Gorelik et al demonstrated that a ma-
jor source of BAFF expression is radio resistant stromal
cells.58 The CD68 expression of these is unknown and
might explain why our DBAFF transgenic mice do not
more resemble a BAFF-deficient phenotype. So far, the
most dramatic phenotype in DBAFF transgenic mice
has been the reduced numbers of marginal zone phe-
notype cells, perhaps reflecting the myeloid cell ex-
pression pattern of the transgenic promoter.

However, the phenotype of DBAFF transgenics
might be based not only on the ability of DBAFF to act
as a dominant negative of BAFF in CD68 positive cells;
DBAFF subunits might associate with other TNF family
proteins, such as APRIL, or form homotrimers with
unique biological functions. DBAFF homomultimers
can form and be transported to the plasma membrane
of transfected 293 cells or S17 stromal cells.55
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