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Abstract. Analysis of circulating cell-derived microparticles (MP) is becoming more refined and

clinically useful. This review, stemming from lectures given at Tokyo late 2003, does not repeat prior

reviews but focusses on new horizons. A major theme is the rising recognition of platelets and their MP

(PMP) as key mediators of inflammation/immunity. Among the major concepts developed are that (i)

many so-called soluble markers of inflammation are in reality MP-bound; (ii) PMP and other MP ap-

pear to serve important signaling and immune functions including antigen presentation. In conclusion,

MP analysis is poised to enter the mainstream of clinical testing, measuring specific antigens rather

than gross levels. However, more research is needed to decisively establish their functions, and inter-

national standards are needed to allow comparing results from different laboratories. (Keio J Med 53

(4): 210–230, December 2004)
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Scope and Background

Scope

This review is based on Part I of lectures delivered
in Tokyo, Japan, Nov. 29 (Part I) and Dec 1 (Part II)
2003, graciously sponsored by Otsuka Pharmaceuticals,
Ltd. Part I centered on platelet microparticles (PMP),
being an update with new perspectives since our 1999
review1 while Part II focused on endothelial micro-
particles (EMP). Since our reivew of EMP is now pub-
lished,2 that topic is not emphasized here. Helpful
reviews by others, each with distinctive perspective, in-
clude those by Nomura3 and by Freyssinet.4

As the title indicates, this article features new hori-
zons or challenges in research and applications of
PMP rather than listing established findings covered in
prior reviews. Other cell-derived microparticles (MP),
notably leukocyte MP (LMP) and erythrocyte MP
(RBCMP), are not a focus of this review but many of
the same principles apply.

This is a critical review in the sense that it highlights
pitfalls in certain methods and assumptions. Because of
the rapidly expanding scope of relevant literature, no

attempt has been made to exhaustively review all rele-
vant work. The review begins with background to ori-
ent readers unfamiliar with MP studies.

What are cell-derived MP?

It is now established that all circulating blood cells,
as well as endothelial cells (EC), are capable of releas-
ing membranous fragments (vesicles), of size less than
@1 mm, bearing on their surfaces at least some of the
antigenic markers distinctive of the parent cell. Several
circumstances occurring in many disease states are
known to stimulate their release such as (i) activation
or apoptosis induced by numerous agents, (ii) partial or
complete lysis such as by complement, (iii) oxidative
injury, or (iv) other insults such as high shearing stress.5
Fig. 1 shows schematically these modes of MP genera-
tion, as distinct from the detailed mechanisms by which
they are released, discussed later and here labeled
‘‘black box’’ to signify that these mechanisms remain
obscure. However, a rise in cytosolic calcium concen-
tration, either from internal stores (dense tubules) or
from the plasma, appears to be a necessary triggering
event or common pathway for vesicle release.
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In contrast to other circulating lipoprotein particles
(HDL/LDL, chylomicrons, various others), electron
micrographic studies from many laboratories reveal
that cell-derived MP are quite heterogeneous in density
and size, most of the larger ones being true vesicles
(hollow with lamellar membrane) as opposed to onion-
like. Many of these shapes and dynamics can be repli-
cated in synthetic liposomes.6 We observed by dif-
ferential centrifugation and electron microscopy that
EMP are also heterogeneous in density, ranging from
a protein-rich fraction (electron-dense in osmium
staining) sedimenting at low-speed to a protein-poorer
fraction sedimenting at high-speed, and all fractions
contained heterogeneous sizes (unpublished). This het-
erogeneity is confirmed in many published electron
micrographs of PMP.7 As discussed later, there may be
overlap between cell membrane-derived MP and other
MP such as exosomes released by exocytosis from mul-
tivesicular bodies (MVB).

How are they measured?

Introduction: PMP and other MP are measured by a
variety of methods or combinations of them. Flow

cytometric and other methods were detailed in our
previous review,1 and more recently for the case of
endothelial MP.2 A variety of less common but inge-
nious methods have also been devised, e.g. immuno-
electrophoresis.7 Reliable ELISA methods have been
developed, particularly by S. Normua et al.,8,9 recently
extended to LMP,10 and by others.11 Flow cytometry is
inherantly quantitative but ELISA is not, therefore
several authors quantitate by prothrombinase activity
of the particles on the plate;12 however, this method is
dubious for reasons below and results cannot be di-
rectly compared to flow cytometry measurements.
Measurement of total phosphate to establish phospho-
lipid (PL) concentration has often been used,1,13 being
reliable but difficult to compare with flow cytometric
counts. A forum on methods by six leading laboratories
is currently in press in Journal of Thrombosis and
Haemostasis (October issue).

Pitfalls: (1) Annexin V/prothrombinase. In this in-
creasingly popular method,14–21 the primary means of
detection or capture of MP depends on their binding
annexin V (AnV) in the presence of calcium; secondary
identification of MP types (PMP, EMP, LMP) is by
ELISA of cell-specific antigens; and quantitation is
often by prothrombinase activity (PF3 activity). The
most serious objection to this method is that we have
demonstrated, at least for EMP, that only a fraction
of all MP are positive for AnV binding.2 Specifically,
EMP from activated endothelial cells (EC) were rarely
positive by AnV binding, since 35-fold more were
counted by anti-CD62E in the same samples; and even
EMP from apoptotic cells, though much richer in AnV
binding, gave only half as many positives by AnV as
by CD31. Since AnV binding measures mainly the
anionic PL, phosphatidyl serine (PS), which is largely
responsible for prothrombinase activity, that method of
quantitation will also give misleading results. In sum,
therefore, the criterion of AnV binding and quantita-
tion by prothrombinase selectively measures only a
subset of MP, potentially giving grossly misleading
results. Similar objections may apply to measurement of
PMP by this method. Likewise, in quantitating RBC
MP by acetyl cholinesterase activity,22 there is no
assurance that all RBC MP have this activity. (2) Cen-
trifugation. Nearly all MP studies rely on preliminary
centrifugations to remove red cells and whole platelets,
giving platelet-poor plasma (PPP) in which the MP are
measured. However, the centrifugation conditions are
not standardized, potentially giving rise to grossly dis-
cordant results. For example, one study of MP in pre-
eclampsia21 reported results very different from find-
ings from our lab,23 probably because the former
authors prepared PPP by centrifuging 2 minutes at
13,000� g, which we find sediments @80% of all MP

Fig. 1 Modes and mechanisms of cell-derived microparticle (MP)
release. A wide variety of disease states can stimulate release of MP
by mediators known to include antibodies, complement, cytokines,
hypoxia, viscose shear and toxins. The MP phenotype may reflect the
mode of insult, such as activation vs. apoptosis. Detailed mechanisms
of vesiculation internal to the cell are incompletely understood.
Abbreviations: ACS acute coronary syndrome; ITP, TTP immune and
thrombotic thrombocytopenic purpura; APLS antiphospholipid syn-
drome; SLE systemic lupus erythematosus; MS multiple slerosis.
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detectable in flow cytometry. On the other hand, no
amount of centrifugation is sufficient to sediment 100%
of MP because, as noted above, some MP are no more
dense than plasma.

The challenge of measuring total MP is therefore
unmet. We have attempted lipophilic fluorescent dyes
but found that they tend to form micelles, giving false
counts even in the absence of MP. More promising
has been the use of lectins such as FITC-labeled Ulex
europaeus since this gives by far the higest counts with
pure cell-derived EMP and PMP; however, it may bind
to other plasma constituants making it unsuitable for
in vivo applications. Other lectins such as Bandeiraea
simplicifolia (a.k.a. isolectin B4, or Griffonia sim-
plicifolia) may offer superior specificity for EMP but
have not been tried.

A promising alternative would be density gradient
centrifugation as used for separation of HDL/LDL
fractions but that is suitable only for research pur-
poses, being time- and labor-intensive and requiring
expensive equipment. (3) Blood collection. Often
under-appreciated is the importance of blood collection
in MP studies. Platelet activation readily occurs ex vivo
with release of artifactual MP, and some anticoagulants
are known to affect antigens important for measure-
ment, e.g. EDTA extracts calcium required for the
structural integrity of GP IIb/IIIa,24 making it invisible
to fluorescent antibodies often used to identify PMP,
and induces activation as defined by CD62P.25 Even
citrate, commonly preferred for platelet studies, differs
significantly in effects on platelets between different
manufacturers and tubes.26 Ahnadi et al. recently com-
pared effects of anticoagulants on platelet activation,
finding significant differences.27 Some workers place
the blood on ice in the belief that this will be protec-
tive,25 but in fact chilling activates platelets, causing MP
release and loss of GP 1b (or glycocalicin).1,28–30

Furthermore, since many or most platelet membrane
glyocoproteins contain disulfide links which are func-
tionally important, lessons learned from preservation
of homocysteine in sample handling31,32 should apply
to platelet/PMP studies. The -SH/-S-S- redox state is
normally governed mainly by glutathione which, as
might be expected, is associated with homocysteine33
and presumably the thiol redox state of platelets as
well. Redox state of platelet GPIIb/IIIa has been
investigated.34 The thiol protease calpain appears criti-
cal to a variety of platelet functions including PMP
production,35,36 more recently concerning conversion
to inflammatory phenotype with production of PMP
and PAF.37 Anti-oxidants inhibit P-selectin expres-
sion38,39 and platelets normally possess an array of
anti-oxidants,40 but platelet/PMP redox state in relation
to various functions, such as tissue factor (TF) activity
and MP shedding, has not been much investigated.

Need for standardization For reasons below, it is
likely that MP analysis will soon enter the mainstream
of clinical testing. Therefore, in view of the profusion of
idiosyncratic methods now in use, few of which can be
quantitatively compared to others, there is a pressing
need to hammer out reference standard methods. Flow
cytometry is probably the reference method of choice
but agreement must be reached on instrument settings,
sample handling, and standard markers for basic quan-
titation, e.g. CD144 for EMP, CD42b for PMP, glyco-
phorin for RBC MP, CD45 for LMP, each of defined
target epitope (clone) and fluoresence. There is, how-
ever, ample room for debate on preferred markers.
For example, GPIba (CD42b) is shed from platelets
during vesiculation41 but as a marker of PMP in ITP42
gives counts different from CD41 (unpublished). CD61
(GPIIIb, integrin b3) has been suggested as a superior
marker of platelets,43 as might be GP VI44 (CD49, col-
lagen R), or certain lysosomal markers, e.g. CD68-
positive MP were studied in ITP45 or CD63. Since flow
cytometry is unavailable in many laboratories, ELISA
methods referenced above are often used but improved
quantitation is needed, as on the model of quantita-
tive titers now standard in measuring anticardiolipin
antibodies.46,47

Why measure them? Clinical applications

At the present time, the most solidly established
function of MP is their procoagulant activity (PCA) as
reviewed1 but even this is not yet proven to be a critical
determinant of thrombosis, the evidence being largely
circumstantial (associational), and as noted above, not
all MP are procoagulant. A major purpose of this re-
view is to indicate potentially vital functions of MP not
yet widely appreciated.

To date, the main clinical application of MP analysis
has been the simple correlation of their levels or quan-
tities with various disease states, as amply referenced to
19991 and still continuing.48 That is, they serve as gen-
eral indicators of cell injury, stress, thrombosis, or in-
flammation. More specifically, dating from about 1990,
PMP levels have been viewed as a marker of platelet
activation.49

However, if this is their only significance then one
may doubt the importance of measuring them since
easier methods are available, such as CD62P expression
on platelets,50–52 detection of actived GPIIb/IIIa by the
mAb PAC-1,53 free thromboxane,54–56 or circulating
markers of inflammation.57,58

On the other hand, recent developments to be
reviewed sugest that MP assay can supply crucial and
specific information. In the first place, it now appears
that many so-called soluble mediators/markers of in-
flammation are in reality MP-bound (next section). In
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the second place, we have observed that PMP levels
do not necessarily correlate with CD62P on platelets.
There may exist distinct subtypes (phenotypes) of PMP,
as has been shown for EMP.59,60 For example, we
observed clear correlation of PMP levels with absence
of bleeding in ITP when PMP were measured by
CD42b (GP Ib)42 but not when measured by CD41 (GP
IIb) (unpublished).

For these and other reasons below, it is our working
hypothesis that PMP and other MP perform important
signalling functions not yet appreciated, and that when
such properties are better understood, assay of specific
markers on PMP and other MP, rather than gross
quantity alone, will enable improved diagnostics and
insights to underlying pathophysiologies.

Microparticles vs. soluble markers

As a final but important introductory topic, it is
now clear that many circulating markers of inflamma-
tion regarded as soluble are in reality bound to MP,
at least in part. This was defended in some detail in our
recent review.2 For example, PECAM-1 (CD31) is
widely accepted as a soluble marker61 but we have
routinely used it to assay PMP and EMP by flow
cytometry.23,62–64 Similarly, E-selectin is widely mea-
sured and regarded as a soluble marker of endothelial
stress65–68 but we routinely use it to identify endothe-
lial MP (EMP),59,60 demonstrating that it is actually
MP-bound, at least in part, because flow cytometry
cannot detect true soluble molecules. ELISA methods
do not distinguish true soluble forms from MP-bound.
Furthermore, filtration of plasma through 0.1 um often
eliminates some or nearly all of such agents from flow
cytometric detection.

Similar considerations apply to many other markers
now regarded as soluble including ICAM-1, VCAM-1,
P-selectin, tissue factor (TF), von Willebrand factor
(vWF; partly bound to EMP69 and PMP), thrombomo-
dulin,70 and CD40L.71 It is well established that some
of these do exist in true soluble form, usually due to
enzymatic cleavage from the membrane or by post-
translational editing,72 but it is equally well established,
by our lab and others, that a significant fraction, up to
80–90%, of some of them occur on cell-derived MP,
presumably with their transmembrane domains intact
and normally adjacent proteins present. (Fig. 2)

The practical importance of this lies in the fact that
release of true soluble species occurs by mechanisms
entirely different from membrane vesiculation, hence
reflect different pathophysiologies. Secondly, true solu-
ble species often have properties functionally different
from their MP-bound forms (as we have shown for
vWF69). In view of these considerations, it is expected
that when the MP-bound markers are clearly dis-

tinguished by independent measurement from the true
soluble species, much clearer relations will emerge be-
tween disease states and the marker in question. In
sum, what are now reported as soluble species are in
many cases actually reports of MP. Thus, to the extent
that such so-called soluble markers are recognized as
valuable clinical tools, MP analysis deserves at least
equal recognition.

New Horizons for PMP

Introduction

Two main developments since our 1999 review are
responsible for the new horizons in PMP analysis, (i)
increasing recognition of platelets as mediators of in-
flammation and immunity, and (ii) discovery of platelet-
associated tissue factor (TF). Table 1 roughly classifies
some platelet-derived agents of interest, many of them
recently discovered, others long-known but with newly
recognized roles. This table is by no means compre-
hensive; others are listed in other sources4,73 or are
common knowledge; see any textbook.

Although many of the agents on Table 1 have al-
ready been identified on PMP, others have not. How-
ever, insofar as PMP are fragments of the cell mem-
brane, we adopt the working hypothesis that many if
not all platelet membrane-associated agents occur also
on PMP, until shown otherwise. In some cases there is
reason to believe that PMP are the sole or main func-
tional vectors of those agents.

Fig. 2 True soluble proteins arise from mechanisms distinct from
their MP-bound form. Immunologic methods such as ELISA will
not distinguish true soluble proteins from their MP-bound forms (such
as CD31 a.k.a. PECAM-1, or CD62E a.k.a. E-selectin), yet they re-
flect different pathophysiologies and may be functionally different.
Soluble forms most often arise from proteolysis such as by matrix
metalloproteases (MMP’s), or by alternative splicing without trans-
membrane domains; whereas MP-bound forms arise by membrane
vesiculation.
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Where do all these agents come from? On the one
hand, platelets are notorious pack-rats, endocytosing
numerous plasma proteins; for example, IgG/IgM, even
virus. Much debate has been given to the source of
platelet tissue factor (TF), possibly from leukocytes;74
and on the source of platelet-derived coagulation factor

V (originally called platelet factor 1),75–78 which also
occurs on PMP.36,79,80

On the other hand, an unexpectedly large variety of
proteins are native to platelets and megakaryocytes,81
as recently underscored by mRNA studies in which
some 232 proteins additional to those known were
identified82 (TF not among them), unexpected because
platelets are so tiny and lack nucleii. Similarly, proteo-
mic approaches to platelet signalling proteins83 and
secreted soluble proteins84 have yielded lengthy new
lists. It would be most interesting to see the proteomic
approach applied to PMP and other MP.

PMP in coagulation and thrombosis

As previously reviewed, the best studied role of
PMP has been their procoagulant activity (PCA) by
virtue of providing a suitably anionic phospholipid sur-
face for assembly of the tenase and prothrombinase
complexes, known as platelet factor 3 (PF3) activity.1,85
PMP also carry FV/Va (cited above) from platelets.86
However, these procoagulant properties are passive,
meaning that PMP could support but not themselves
initiate coagulation.

That view changed dramatically with the discovery
of platelet-associated tissue factor (TF).87,88 TF anti-
gen and activity also occur on PMP in significant
amounts.89–91 It was previously shown that PMP play
a special role in engendering TF activity of mono-
cytes92,93 and other cells71 but the recent finding that
TF is intrinsic to platelets and PMP was a surprise in
view of the long history of studies of platelets and TF.
(We observed TF activity of PMP but dismissed it as an
artifact, not suspecting that such a key property could
have been overlooked for so long.) Thus, PMP are
now known to be capable of initiating coagulation as
well as passively supporting it. These two procoagulant
activities of PMP, passive and active, are qualitatively
distinct.

Other modulators of coagulation or clotting have
also been identified on PMP, for example, b2GP-1,94,95
closely associated with anti-phospholipid antibodies
(APLA) in APS.96,97 It exhibits calcium-dependent
membrane binding despite absence of gla domain.98
Theories purporting to explain the correlation between
anti-b2GP-1 with APS have been proposed in terms of
the protein C system;99–101 see next section. We have
shown that EMP carry significant vWF,60 that PMP also
carry it, and that EMP-vWF is functionally more active
than free soluble (manuscript submitted).

PMP and the protein C anticoagulant system

As stated in our earlier review,1 Tans et al. proposed
that PMP could perform an anti-coagulant rather than

Table 1 The New Platelet: Some Agents of Recent Interest

I. Mediators of Inflammation/Immunity
In general 73, 140, 141, 213, 214
RANTES, MIP-1, GRO-a,
bTG, others

164–166, 215

IL-1 160, 161, 163; on LMP 162
CD40, CD40L 175, 176; on PMP 71
VEGF 216
BAFF 184
Fractalkine 178
Fas (on MP) 217
PAF (on PMP) 142
CCR1, 3, 4 179
CXCR4 166, 182; PMP 181
CX3CR1 (& pertussis tox.) 178, 218
Receptor heat-shock protein 208
Thrombospondin 129
Platelet factor 4 (PF4) 129
b-thromboglobulin 129
sPLA2 (PMP as subtrate) 13, 172
Nitric oxide synthase 219
MMP 1, 2, 9 referenced in 186

II. Coagulation/Clotting
Tissue factor (TF) 87, 88; on PMP 89–91, 220, 221;

generic or other MP 222, 223
TF pathway inhibitor (TFPI) 224
b2GP1 (on PMP) 94, 95, 98
Thrombomodulin (on LMP) 70
von Willebrand factor (on EMP) 60, 69
Factor V/Va 76
PAI-1 225, 226

III. Pro- and Anti-Angiogenic (see text for more):
VEGF 216
Angiostatin 186
Endostatin 187

IV. Other Receptors
For estrogen, androgen 227
For leptin? 228
For shiga toxin? 229
For erythropoietin (EPO) 82
For LDL? 230
For insulin? 219, 231
insulin R & NO synthase (NOS): 219, 231
For vasopressin (& DDAVP?) 169, 170, 232
b2 integrin
(as in CD11a,b,c, CD18)

233

V. Miscellaneous
Anti-oxidants 40
Amyloid precursor protein (APP) 234
Sialyl Lewis x (CD15s) 235
JAM proteins 236–238
CD59 (C inhibitor) 239, 240
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procoagulant function in some circumstances by sup-
porting the protein C system.102 More recently, a simi-
lar argument has been advanced by Berckmans et al. in
their discussion.103 Confirming other reports, the latter
find that circulating MP in normal controls support low-
grade thrombin generation, but by the contact pathway,
not TF (however, new insights on the contact pathway
raise doubts about its supposed function104). They
argue that low-levels of thrombin are almost entirely
bound to thrombomodulin (TM), leading to activation
of protein C and thus inactivation of FVa and FVIIIa;
hence MP-dependent thrombin generation serves an
anticoagulant function in normal hemostasis.103

A cartoon of the main players in the protein C/S
system are shown in Fig. 3, based on several sources,105
the intention being to indicate likely roles for MP in this
system additional to that mentioned above, suspected
because most of the key steps, like those of coagulation,
occur at membrane surfaces. This system is obviously
extremely complex,106 well reviewed elsewhere107–109
and no attempt is made to describe it here. (TAFI in
the figure, thrombin activable fibrinolysis inhibitor, is
now more properly called carboxypeptidase U.110)

Gris et al. observed that a substantial but variable
fraction of protein S is MP-associated and that clinical
assays using PEG precipitation for free vs. C4bp-bound
underestimate it because much of it is precipitated by
PEG with MP.111 Incidentally, this suggests that PEG
might be exploited as a method of MP isolation. The

MP carrying the protein S was not identified. For re-
cent review of protein S.112 Recently, much interest
has focused on the endothelial protein C receptor
(EPCR).113 A true soluble form (sEPCR) can arise by
MMP proteolysis induced by inflammation, as cited
in;114 but in a recent study,115 a thrombophilic geno-
type (A3 haplotype) with elevated sEPCR associated
with thrombosis showed no evidence of lacking the
transmembrane domain, suggesting that the authors
actually measured MP-bound EPCR, probably on
EMP. Similarly, a true soluble form of thrombomodulin
(TM) is released by neutrophil elastase,105 yet TM has
been detected on leukocyte MP;70 since endothelium is
the main site of TM, it may be expected also on EMP.
(Neutrophil elastase also acts directly on FV/Va.116)
Circulating TM was elevated in TTP in correlation with
vWF117 but we have recently found that vWF is in part
associated with EMP69 (manuscript submitted).

Another point of involvement of MP with the pro-
tein C system is via inhibition of activated protein C
by MP-associated tissue factor (TF),118 likely to also
involve TF pathway inhibitor (TFPI). Platelet factor 4
(PF4) is another known participant involved in regula-
tion of clotting through protein C119 and occurs on
PMP. As referenced above, b2GP-1 is rich on PMP and
is known to affect the protein C system, predisposing
to thrombosis and APS. It is difficult, of course, to sort
out the many influences on this system in vivo, owing
to its extreme complexity, only partly shown; for exam-

C4BP

and 

/or?

TM

EC (& other?)
thrombin

protein C

PC

Kd 0.5nM

APC FVa
Inactivates

FVIIIa

Inact.

Gla, Ca2+

EPCRMP

aTAFI
fibrin

C5a,C3a

TAFI

also 

uPA
PC 

inhib.

PAR-1

(Neutrophil elastase can release TM to sTM.)

PF4

ß2GP-1

PS

PS

TF

inhib.PS

Fig. 3 Potential sites of interaction of cell-derived MP with the protein C anticoagulant system. This diagram, adapted from several sources,
illustrates the still-growing complexity of the protein C system, critically involved in many thrombotic pathologies, probably including anti-
phospholipid syndrome as well as normal hemostasis. Although not yet proved, there is evidence that MP may significantly modulate several of
the interactions shown, including EMP as site of assembly of the central complex, as discussed in text. Abbreviatons: PC protein C; APC acti-
vated protein C; PS protein S; MP cell-derived microparticle; TM thrombomodulin; C4BP complement C4 binding protein; EPCR endothelial
protein C receptor.
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ple, not shown in Fig. 4 are the actions of PAI-1 and
vitronectin.120

Nonetheless, in summary, there are numerous points
at which PMP or other cell-derived MP are known or
plausibly suspected to affect the protein C system, ei-
ther positively or negatively. Further study is clearly
needed and would certainly be warranted in view of the
pivotal importance of this system to hemostasis, throm-
bosis, and inflammation. For example, activated protein
C is the only therapy thus far shown to be effective in
sepsis;121–124 PMP in sepsis has been studied16,125–127
including by our lab128 (full manuscript submitted).

The New Platelet: Beyond Thrombosis

Introduction

The recent discovery of many additional bioactive
agents on/in platelets and PMP such as those listed
in Table 1 extend the likely role of PMP beyond
thrombosis.

It should be emphasized that not all agents known or
suspected to occur on PMP (or other MP) necessarily
occur on all PMP, as it is now emerging that cell-
derived MP can occur in multiple phenotypic species,
that is, bearing certain restricted sets of proteins; and
that the distribution of phenotypes can vary with the
stimulus eliciting their release. For example, Fox noted
different protein compositions on PMP elicted by dibu-
cain vs. calcium ionophore A23187129 and we have

shown different phenotypic sets of EMP depending on
whether the endothelial cells (EC) were activated or
apoptotic.59 Likewise, it was remarked above that PMP
measured by two different markers (CD41, CD42) did
not both correlate with disease activity, implying dis-
tinctive subsets.

It is relevant to add that platelets themselves
appear to comprise multiple species. Examples other
than those discussed in our prior PMP review1,130–133
include differencces in electrophoretic mobility;134 pla-
telet age subpopulations by lectin affinity135 (others
have used bouyancy); uptake of thiazole orange;136 and
distinct subpopulations in chronic myeloid leuekemia
(CML)137 and other cancer hemostatic abnormal-
ities.138 We have shown distinctive electrophoretic mo-
bility of platelets from patients with recurring TIA.139
It may be expected that PMP would reflect such sub-
populations in one or more differentiating markers or
functional properties.

PMP in inflammation

Several roles of platelets in inflammation were well
reviewed as of 1994 under editorship of M. Joseph,
much of it summarized in Ch. 2 of that book,140 but
were not widely appreciated until recently.73,141 We
suggest that many of those roles may actually be
served by PMP, to greater or lesser extent. Thumbnail
sketches of some of the mediating agents follows.

Platelet activating factor (PAF) is carried mainly on

Fig. 4 Potential roles of platelet microparticles (PMP) in angiogenesis. This figure, adapted from several sources (especially ref’s 186–188),
illustrates another of the ‘‘new horizons’’ of MP studies, since all the promotors and inhibitors of angiogensis shown on the inset table are found
on platelets, and several have been identified on PMP. It is likely that all membrane-asociated species on platelets also occur also on PMP
(working hypothesis). See 3.3 of text. Abbreviations: MMP matrix metalloprotease (numbers 1, 2, 9 identified on platelets); TIMP tissue
inhibitors of MMP; TF tissue factor (disseminated on microparticles); TFPI is TF pathway inhibitor; tPA tissue-type plasminogen activator; TSP
thrombospondin; PF4 platelet factor 4; VEGF vascular endothelial growth factor; PDGF platelet derived growth factor; bFGF basic fibroblast
growth factor; EGF endothelial growth factor; TGF transforming growth factor.
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PMP142 and is known to modulate leukocyte adhesion
to endothelium,142 to contribute to endotoxin-induced
injury,143,144 organ transplant injury,145 and may be
involved in some thrombocytopenias.146 PAF can be
significant in picomolar amounts147 and may have
special importance in stroke and brain injury.148 It is
responsible for the release of vWF in response to
DDAVP therapy; see below on vasopressin.

Platelet factor 4 (PF4) has been known since the
early days and has been shown to occur on PMP129 but
has received new attention lately because of a sus-
pected role in atherosclerosis,149 perhaps through its
contribution to priming neutrophils via GM-CSF;150,151
and because it has been identified as a key antigen in
heparin-induced thrombocytopenia (HIT) and HIT
with thrombosis (HITT).52,152 For some updated ref-
erences on PF4 and other inflammatory mediators from
platelets, see Anitua.73 When secreted upon activation
of platelets, it localizes to the plasma membrane, at
least in part,153 as do other granule proteins identified
on PMP (P selectin, thrombospondin,154,155 CD63,156
etc.), supporting our working assumption that many if
not all platelet membrane-associated molecules occur
also on PMP, until proven otherwise. Among many
putative roles, PF4 is involved in regulation of clotting
through protein C119 (Fig. 3).

Thrombospondin (TSP) also has long been known
on PMP129,157 and has diverse activities including
modulating vWF activity,158 complement activity (it co-
purifies with factor H),159 and angiogenesis. Interleukin
1 (IL-1) has been known for some 15 years to be pres-
ent in platelets160,161 and has been identified on mon-
ocyte MP,162 hence likely occurs also on PMP. mRNA
shows it is constitituve, not acquired from plasma.163

RANTES, a potent chemotactic factor for eosino-
phils from platelets,164 has been immuno-histochemi-
cally localized to the a-granules, to the open canalicular
system (OCS), and to the plasma membrane, as was
MIP-1,165 leading to the expectation that they are also
present on PMP. Aside from their chemotaxis for eosi-
nophils and basophils, both mediate release of hista-
mine and thus are true inflammatory mediators. Three
such mediators (PF4, RANTES, b-thromboglobulin)
were shown to be slowly but significantly released from
stored platelet concentrates and may contribute to non-
hemolytic transfusion reactions;166 these are probably
on PMP, at least partly.

The platelet receptor(s) for vasopressin is of
special interest to us because we showed that DDAVP
(desmopressin, a vasopressin analog), now widely used
as an anti-hemorrhagic drug, can act directly on platelet
to induce a rise in cytosolic calcium and release of
PMP,167 contraray to two prior reports.168,169 This
work was overlooked by two subsequent reviews of
DDAVP and by a recent paper on DDAVP action

on platelets,170 possibly because our results were not
believed in view of the prior negative reports using
supposedly more sensitive calcium reporters. In fact,
the dye we used, CTC, is more sensitive, not less, in the
vicinity of membranes such as dense tubules because it
is lipophilic.171 Although the effects shown in vitro
were modest, in vivo DDAVP could act synergistically
with PAF released from leukocytes in response to
DDAVP, since this is believed to be the mechanism by
which DDAVP elicits release of vWF from the vascular
endothelium.167

Secretory phospholipase A2 (sPLA2), like C-
reactive protein (CRP), is an acute phase reactant
whose plasma levels increase up to 1000-fold in in-
fections (inflammation). It is constitutively present in
platelets and probably on PMP since it has been
shown to act on PMP (but not on intact platelets) to
produce lysophosphatidic acid (LPA), of diverse activ-
ities including platelet aggregating, which may be pro-
moted by other products of sPLA2 activity such as
arachadonic acid.13 sPLA2 became tightly bound to
added albumin, degraded phosphatidyl serine (PS), and
was suggested to participate in ceramide production
in response to other inflammatory mediators. The
observed effects were augmented by sphingomyelinase,
the beta toxin of S. aureus.13 More recently, Billy et al.,
adopting the view that sPLA2 is mainly anticoagulant,
emphasized the role of sPLA2 in degrading phospha-
tidyl serine (PS) to abolish the prothrombinase activity
of MP; this happened unexpectedly rapidly, i.e. only a
small degree of PL membrane hydrolysis abolished
support of coagulation.172 In summary, the activities of
human sPLA2 (as distinct from that from bee or cobra
venoms), whether anti- or pro-thrombotic, are not yet
entirely clear but it does seem clear that PMP are likely
to be key participants in its actions.

Further stimulating interest in platelets/PMP as in-
flammatory/immune mediators are recent reports on
CD40/CD40L173–177 making it a hot topic; it has been
identified on PMP in vitro71 and in vivo, being another
example of a supposedly soluble molecule which is in
fact MP-bound, at least in part.

Chemokine receptor CX3CR1 for fractalkine (and
for pertussis toxin) has been identified on platelets,178
as have other chemokine receptors.179,180 The most
abundant of these, CXCR4, was readily identified in
PMP by its bright signal and may play a role in cancer
metastasis181 and juvenile ITP.182 CXCR4 (and CD4)
can be transferred by PMP to other cells, rendering
them susceptible to HIV infection;181 related observa-
tions were earlier made for MP-mediated transfer of
CCR5.183

The recent identification of the above, and BAFF,184
fractalkine178 and other such mediators (Table 1)
on platelets, underscores the role of platelets as
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major inflammatory mediators. PMP are already
known to carry several of these and may be their major
vectors, particularly in the microenvironment of the
site of inflammation where platelet activation occurs,
with concommitant release of PMP at locally high
concentrations.

PMP in cancer: mediators of angiogenesis & metastasis

Multiple lines of evidence suggest that PMP play a
unique and critical role in cancers. A recent ASH ab-
stract reported that PMP (including platelet exosomes)
markedly stimulated metastatic potential of 5 cancer
cell lines, as judged by at least four measures, and re-
lated effects were confirmed in vivo.185 Anitua et al.
classified many platelet-derived substances as pro- and
anti-angiogenic.73 Our Fig. 4 summarizes these and re-
lated properties, based mainly on Jurasz et al.186 Of
notable interest is the presence of matrix metal-
loproteases (MMP) 1, 2 and 9 in platelets, which be-
come surface-expressed in response to activation, along
with their TIMP inhibitors, and angiostatin, released
in tandem with plasmin by the action of tissue plasmi-
nogen activator (tPA) or MMP-9. Platelets also express
and release endostatin,187 said to be a fragment of
plasminogen.188 Platelet activation can be caused by
thrombin (which itself possesses angiogenic poten-
tial189) or by tumor cells and results in PMP known to

carry at least some of the angiogenic mediators listed,
e.g. VEGF and TF;71 TF is also an angiogenic media-
tor.190 Not shown in the figure is thrombospondin, an-
other of the many platelet-derived regulators of angio-
genesis191 known to be vectored on PMP.

Consequently, if as proposed by Folkman and
Kalluri192 and similarly by Jurasz,186 the difference be-
tween common and harmless in situ tumors and their
progression to lethality hinges on the balance between
pro- and anti-angiogenic factors in circulation, then MP
may well be pivotal in this balance insofar as they are
known vectors of several of these factors. MP from tu-
mor cells have been shown to promote angiogenesis,193
presumably via VEGF and other MP-associated angio-
genic factors.194 Oncogenes can be transferred via that
species of MP known as apoptotic bodies.195

Exosomes: platelets as antigen-presenting cells (APC)

An exciting recent development in immunology has
been the recognition that certain classes of micro-
particles, usually collectively called exosomes, perform
crucial antigen-presenting and other cross-talk func-
tions. A cartoon conveying some concepts and key
experiments is shown in Fig. 5, based mainly on Wolfers
et al.196 and sources cited there,197,198 with helpful
commentary on their intracellular sources, known as
multivesicular bodies (MVB)199 (pg 625). They are
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Fig. 5 Exosomes as a variety of cell-derived MP. This figure sketches some functional activities of exosomes, which may overlap in both de-
tection and function with plasma membrane-derived MP such as PMP. It is adapted from text of ref’s 196–198. Exosomes are expelled from
multi-vesicular bodies associated with a specialized endosome and function to present antigens. They are best characterized from B cells and
dendritic cells but are now recognized also in platelets. See 3.4 of text. Abbreviations: DC dendritic cell; MHC major histocompatability com-
plex; CTL cytotoxic lymphocyte; MVB multivesicular bodies.
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relevant here because it is now known that exosomes
are released from platelets as well as leukocytes,200,201
and therefore constitute a species of PMP.

Although said to be somewhat smaller at 40–80
nm201 or 60–90 nm196 than PMP normally detected
in flow cytometry (@100 mm), there is some overlap.
For example, in one platelet study, the isolated size
fraction > 100 nm of putative exosomes exhibited the
same key marker CD81 (a.k.a. TAPA-1) as the smaller
high-speed fraction202 but that large size fraction was
not further investigated. Both fractions exhibited lyso-
somal marker CD63 (LIMP or LAMP-1), one of the
markers often used to identify endosomes but also a
well-known surface marker of platelet activation found
on PMP.49,156,203–205 Perhaps relatedly, if lysosomal
markers are signatures of exosomes, Nomura et al.
found MP positive for CD68, a lysosomal marker, in
ITP at levels higher than controls, p < 0.01.95 In view of
the size overlap, and since they derive from platelet
MVB or alpha-granules, the latter known to mirror the
platelet surface,155 it appears that at least some platelet
exosomes are detected along with PMP in normal flow
cytometry; and likewise for exosomes from other cells
and their respective surface membrane MP since their
granule proteins, too, often mirror the identifying pro-
teins of the plasma membrane.206 Indeed, direct evi-
dence that PMP may function in this way has been
reported.207 If a research-grade flow cytometer is
available with high-power laser, it should be possible to
specifically detect and measure exosomes more easily
than by conventional tedious ultracentrifuge methods
of isolation.

The immunologic role of exosomes is probably re-
lated to other agents recently identified on platelets
such as the receptors for heat shock proteins (HSP),
now known to exert pleiotropic effects including acti-
vation of dendritic cells. Thus in the report by Hilf
et al.,208 the HSP called Gp96, which activates dendritic
cells (DC) to induce release of pro-inflammatory cyto-
kines, is shown to bind to thrombin-activated platelets
10-fold increased relative to resting platelets, attenuat-
ing its effects, as in wounds or trauma, and reducing
potential autoimmune responses.

Such work has been widely extended, as in work on
the EAE mouse model of MS employing MBP as anti-
gen,209 of special interest to our lab because of our long
interest in microparticles in MS, initially PMP210 but
more recently EMP.63,11,212

Possibly Related or Unidentified MP

One often encounters mention of microparticles
(MP) in the literature without clear attribution of their
kind or source. For example, we earlier mentioned the
finding by Gris et al. of MP associated with protein S

but the MP remain to be identified. In this article we
cite other such cases warranting further investigation,
particularly as they imply new functions of MP.

MP bearing mRNA

Circulating mRNA has been of interest in cancer re-
search, but is highly unstable when free in plasma,
thereby raising the question of its persistence, answered
by finding it is protected against degradation by associ-
ation with MP.241,242 It had earlier been shown that
mRNA on so-called apoptotic bodies is protected.243
The source and type of MP in question was not fully
addressed. This observation raises the possibility that a
general function of MP may be to protect agents caried
on them against degradation. We have postulated that
vWF associated with EMP is thereby protected against
proteolytic degradation, maintaining it in active high-
multimer form69 (full manuscript submitted).

Filtration affects von Willebrand factor (vWF ) assay

vWF was shown to be depleted in some patients as a
result of filtration of the plasma, causing errors in clini-
cal hematology tests.244 This suggests that vWF (and
possibly other factors affected in that reference) are
MP-associated, to a degree varying with individual
patients. We have directly demonstrated that vWF can
occur bound to EMP and in that form is partly filter-
able;69 and that significant vWF associates also with
PMP (by electrophoresis and Western blot; unpub-
lished). Of related interest, the same authors (Favaloro
et al.) have shown that storage of blood on ice can also
lead to errors in tests for vWD;245 insofar as cold is
known to induce platelet activation and PMP forma-
tion, one may conjecture that cold-generated PMP are
binding platelet vWF in some patients, explaining the
errors through loss of vWF with PMP in centrifugation.

Nucleosomes, etc

Jiang et al. noted an abundance of so-called nucleo-
somes in patients with SLE, and in that paper246
reports measuring them after administering necrotic or
apoptotic Jurkat cells to mice. This term may be equiv-
alent to the poorly defined MP called apoptotic bodies
released from apoptotic cells, but may be equivalent
to what we term EMP from apoptotic EC, which are
distinct from EMP released from activated EC.59 They
have been shown to be active in the horizontal transfer
of oncogenes.195 Incidentally, it has recently been
demonstrated that exposure of phosphatidyl serine
(PS), which is particularly rich on MP from apoptotic
cells, is a true receptor for signalling phagocytosis,247
hence is involved with the clearance of MP exposing
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this phospholipid. However, as indicated in that survey,
the phagocytosis signal is complex, also involving such
as C1q of complement247 as well as LOX-1, b2GP1-R,
vitronectin R, and Mer receptor tyrosine kinase.247

Other examples abound, such as the transport of
LPS on an MP-like lipid binding protein to its receptor
CD14 and its regulation by TFPI.248 It may be noted,
by the way, that a cytosolic receptor for LPS is now
recognized, through work by G. Nonez and colleagues,
involving NOD1 and NOD2 (now called CARD-4 and
CARD-15), independent of the Toll-like receptors
recognizing extra-cellular ligands, all acting on NF-kB
genes; see perspective with references.249

High- and low-density lipoproteins (HDL, LDL)

Best known for their cardiovascular risk (LDL) or
benefit (HDL), these particles occur in a narrow range
of small sizes (LDL 20–23 nm, HDL 7–13 nm250), also
defined by characteristic apolipoproteins, hence are
unlikely to be confused with cell membrane-derived
MP. Nevertheless, they may be relevant in this context,
because of evidence that they can fuse with or other-
wise directly act on platelets.230,251 LDL and HDL are
known to exhibit many activities, some of which are
also found on cell-derived MP, a few examples being
thrombin/AT III complexes,252 procoagulant activ-
ity,253 C reactive protein (CRP),254 PAF degrading
enzyme,255 TFPI (formerly called LACI, lipoprotein-
associated coagulation inhibitor),256,257 and b2GP1.258
Some of these agents are evidently promiscuous (non-
selective) with regard to the phospholipids to which
they bind, hence could associate with more than one
kind of circulating MP. For example, TFPI is heteroge-
neously distributed in lipoprotein fractions, not neces-
sarily associated with apo-B or apo-A1257 and is found
also in other plasma fractions and in platelets224 (By
analogy, the coagulation proteins assemble to active
form with liposomes of many kinds and sources, not just
platelets or PMP or cephalin; e.g. we find vegetable
lecithin to be as potent as brain cephalin in coagula-
tion). In sum, HDL/LDL may be relevant to cell-
derived MP studies via interactions such as fusion and
influence on cell-derived MP sheddding by lipid
exchanges altering the PL composition of lipid rafts
involved in MP shedding.259

Mechanisms of Microparticle Release

Background

Despite many efforts, detailed biophysical knowl-
edge of the mechanisms of MP release remains elusive.
This article surveys some major paradigms now current

and other suggestive clues. Our previous review1 briefly
surveyed this topic as of then, in particular, work by
Fox et al., White et al., and especially by Sims, Shattil,
Wiedmer and colleagues in connection with their series
of studies of PMP release by complement,260 where
they achieved only partial success on the mechanism
question, e.g. use of protein kinase inhibitors.261 How-
ever, a few principals have been repeatedly confirmed,
notably the requirement for elevation of cytosolic cal-
cium,36 either from internal stores or through the
plasma membrane. Metabolic energy was not required.
Haynes et al. of this institution has well reviewed and
diagrammed calcium handling in platelets,262 although
knowledge of the relevant calcium channels has since
improved.

The membrane flip/flop paradigm

This concept, due mainly to Zwaal et al. beginning in
the mid-1980s, holds that the process of MP shedding
relies on specific enzymes (floppase, scramblase263)
which induce the normally in-facing and more anionic
phospholipids of the inner side of the membrane bilayer
to switch, flip, or scramble to the outer (plasma) side;
this causes the platelet (or other cell) to become pro-
coagulant, since anionic phospholipids such as PS are
essential to supporting coagulation, and is accompanied
by the sheddding of procoagulant MP.264,265 (It had
long been known that inside-out erythrocytes could
be prepared,266 and for that matter, mitochondria,267
the chief novel insight of Zwaal et al. being to draw a
connection between procoagulant activity and mem-
brane sidedness; and the hypothesis that this was con-
trolled by one or more enzymes.)

This was surveyed in our prior PMP review but
is reiterated here because of what we believe to be
unwarranted generalizations now commonly drawn
from that concept, specifically, that a defining feature of
MP is exposure of PS. For example, as remarked ear-
lier, many laboratories now define, measure, capture, or
otherwise isolate MP on the basis of annexin V binding,
which is quite specific for PS; but we find that only a
fraction of MP are PS-positive, depending on their
mode of production, e.g. apoptosis vs. activation.2 The
review by J.M. Freyssinet is properly skeptical of claims
about certain enzymes (scramblase, floppase) inducing
the flip-flop and associated MP release,4 yet makes that
hypothesis a central organizing principle, as we have
criticized in a letter-to-the-editor.268 Other evidence
that platelet activation is not necessarily coupled to
membrane flip-flop is seen, for example, in work by Leo
et al., who found that knock-out mice lacking SLP-76
responded to agonists with 10-fold increased CD62P,
yet showed no increase in surface PS expression;44
unfortunately, they did not measure MP release.
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The lipid raft concept

It had been known for a long time that many if not
all proteins of the plasma membrane exhibit a high de-
gree of lateral mobility,269 manifested in such phenom-
ena as receptor clustering, dimerization, and capping of
leukocytes.270–272 Recently, the concept of lipid rafts
has emerged, in part to account for aspects of this
mobility, being floating islands of distinctive lipid com-
position bearing restricted sets of proteins (such as
GPI-anchored), and are studied by their differential
solubility in detergents.273–280 Erythrocytes (RBC)
have been good models for study281 and their rafts help
us to understand earlier findings such as the selective
shedding of RBC MP enriched in acetyl cholinester-
ase.282 The latest ASH meeting included new findings
on rafts related to TF activity283 and platelet cytoske-
leton.284 Some authors speaks of just one kind of raft
but others imply several. Sun et al. has sought to relate
scramblase activity to lipid rafts.285

We have observed by fluorescence microscopy the
clustering (capping) of PECAM-1 as a prelude to the
shedding of MP enriched in it,286 suggesting that spe-
cific kinds of rafts are preferentially shed as MP. This
would explain our finding of multiple phenotypes of
EMP,59 i.e. on the assumption that they reflect distinc-
tive raft species. Millan et al. has studied rafts in the
uropods of leukocytes,287 further hinting at a link be-
tween rafts and blebbing, vesiculation. Relatedly, we
have observed that the shedding of endothelial MP
(EMP) in vivo is highly sensitive to the lipid profile of
the volunteer before and after a high-fat meal259 (in
press), consistent with the fact that the composition and
stability of rafts are very sensitive to levels and compo-
sitions of particular plasma lipid particles and transfer
proteins. For example, Frenkel et al., following earlier
studies investigating release of erythrocyte micro-
particles (RBC MP) in response to incubation with lip-
osomes of various compositions, which induce various
shape changes (such as to echinocytic), demonstrated
that concentration of cholesterol in the membrane is
key to vesicle shedding, and does not depend on
ATP.22 Thus, the now emerging elucidation of lipid
rafts promises better understanding of the shedding of
MP with distinctive antigen composition.

Liposome models and complement (C)

Using artifical liposomes as models of MP, it has
been shown that those bearing negative or positive
charge bind and activate complement (C) leading to
lysis by the classical and alternative pathways, respec-
tively, while neutral liposomes have no effect.288 They
readily identified activated C on the liposomes. Such
studies are important for application of liposomes as

drug delivery systems but may have limited relevance
to natural MP since physiologic MP often or usually
bear agents which modulate the action of C, such as
sialyl groups known to bind the C inhibitor, factor H,288
and probably other more specific membrane-associated
inhibitors of C-mediated autologous lysis such as DAF
and CD59, which we briefly studied;240 for authorita-
tive review.289 On the other hand, C-mediated lysis of
opsonized platelets, whose study was pioneered by Sims
et al.1 and which we have also investigated,290 results in
the membrane attack complex (MAC) being largely
carried away with the resulting PMP so that the cell
recovers. C was readily detected on the resulting PMP
(also EMP291), suggesting, by the way, that C-mediated
platelet or endothelial injury, as may occur in some
patients with ITP, TTP, APS, etc., could be identified
by measuing C-associated MP. Perhaps relatedly, Tay-
lor et al., using a baboon model of thrombosis induced
by TNF and anti-protein C in the setting of partial stasis
of the superficial femoral vein, showed that infusion
of phospholipid vesicles greatly amplified the throm-
botic response,292 although for reasons above, the
physiologic relevance of artificial liposome infusion is
doubtful. We trust, however, that current liposome-
based drug delivery systems are at last aware of these
pitfalls.293

Parting remarks

Although a detailed understanding of MP shedding
is not yet at hand, it is likely to be furthered by recent
advances in understanding cytoplasmic vesicle traffic,
uropod formation,294 inter-cellular membrane fusions,
granule secretions and related events, including oft-
drawn parallels between neurons and platelets; several
of these topics are reviewed by Reed et al.295 As long
appreciated,129 all these events seem to involve the
cytoskeleton (although the striking models of Baumgart
et al. show such properties without any protein6).

Summary & Conclusions

The central message of this review has been to indi-
cate new horizons for research and clinical applications
of PMP and other MP. Specifically, we envision a sec-
ond generation of MP assays in which specific func-
tional agents on MP rather than gross quantities of MP
constitute the analyte. This expected new generation of
assays will most likely focus on the putative immune
and inflammatory roles of MP, and will benefit from the
realization that many so-called soluble markers are in
reality MP-bound, at least in part.

However, the word putative should be emphasized
because it remains to be proved that MP are indeed
crucial carriers of such agents, whose quantitation could
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be of real clinical value. In other words, realization of
this vision entails the considerable preliminary chal-
lenge of demonstrating exactly which of the many likely
functions outlined above are in fact important and are
directly reflected by quantitation of the MP carrying the
agents in question.
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