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Abstract. Over the last eight years, several naturally occurring human gene mutations in structural

components of desmosomes, cell-cell adhesion junctions found in skin, heart and meninges, have been

reported. These comprise dominant or recessive mutations in plakophilin 1, plakophilin 2, desmopla-

kin, desmoglein 1, desmoglein 4, plakoglobin and corneodesmosin. Of note, as well as compromising

tissue integrity, many of the resulting phenotypes have been associated with visible changes in hair.

This article describes the particular hair abnormalities resulting from these desmosome gene mutations.

Collectively, the data demonstrate the surprising effects inherited desmosome gene/protein pathology

may have on hair growth and development. Further analysis of these and other desmosome genes is

likely to resolve more hair disease mysteries and provides several further intriguing new discoveries in

years to come. (Keio J Med 54 (2): 72–79, June 2005)
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Introduction

Desmosomes are cell-cell complexes found primarily
in epithelial tissues but also in the meninges, the den-
dritic reticulum cells of lymph node follicles and the
myocardium. They constitute the major intercellular
adhesion mechanism in both follicular and inter-
follicular epidermis, anchoring keratin intermediate
filaments to the cell membrane and bridging adjacent
keratinocytes, and allowing cells to withstand trauma.
Initially described as ‘‘discontinuous, button-like’’ struc-
tures of epithelia,1 desmosomes are now also recognised
as signalling intermediates composed of an emerging
and expanding network of tissue-specific membrane
and membrane-cytoskeletal linker molecules.2,3

The desmosome has a characteristic ultrastructural
appearance, in which the cell membrane of two adja-
cent cells forms a symmetrical junction with a central
intercellular space of approximately 30 nm containing a
dense line (Fig. 1). Plaques of electron-dense material
run along the cytoplasm parallel to the junctional re-
gion, in which three ultrastructural bands can be dis-

tinguished: an electron-dense band next to the plasma
membrane, a less dense band, then a fibrillar area. The
main components of desmosomes consist of the prod-
ucts of three gene superfamilies: the desmosomal cad-
herins, the armadillo family of nuclear and junctional

Presented at the 1383rd Meeting of the Keio Medical Society in Tokyo, November 9, 2004
Reprint requests to: Dr. John A McGrath, Genetic Skin Disease Group, St John’s Institute of Dermatology, The Guy’s, King’s College and St
Thomas’ Hospitals’ Medical School, London UK

72

Fig. 1. Ultrastructural appearances of a desmosome in human skin.
There are alternating electron dense and lucent zones in the extrac-
ellular space adjacent to the intracellular plaques.



proteins, and the plakins.4 The transmembranous cad-
herins comprise mostly heterophilic associations of
desmogleins and desmocollins. The armadillo proteins
include plakoglobin, the plakophilins and p0071.5 The
plakin family proteins include desmoplakins I and II,
plectin and the cell envelope proteins envoplakin and
periplakin. The network of the major interactive des-
mosomal proteins is depicted in Fig. 2. Further clues to
the biological function and in vivo contribution to ker-
atinocyte adhesion of these desmosomal components
have arisen from naturally occurring mouse mutants,
transgenic mouse models and a variety of human dis-
eases, both inherited and acquired, although this report
will mainly focus on inherited human desmosome dis-
eases with a hair phenotype, a number of which are
illustrated in Fig. 3.

Plakophilin-1: Autosomal Recessive Skin
Fragility-ectodermal Dysplasia Syndrome

The armadillo family is defined by the presence of a
42 amino acid repeated motif termed an armadillo
(arm) domain. Historically, desmosomes isolated from
‘‘cow nose epidermis’’ were separated to reveal a large
number of bands by SDS-polyacrylamide gel electro-
phoresis.6 Eight major polypeptide bands were initially
identified. Of these, ‘band 6’ migrated at 77.5-kDa and
was singled out as being a positively charged junction-

associated protein.7 cDNA cloning, protein sequencing
and the development of specific antibodies identified
band 6 protein (current nomenclature, plakophilin 1,
or PKP1) as not only a cell-type specific component
of stratifying epithelial desmosomes but also a nuclear
component of virtually all cell types assessed.8–10 This
dual locality is a hallmark of the armadillo family of
signalling and adhesive molecules, including beta-
catenin, plakoglobin and p120 catenin. PKP1 is an ar-
madillo protein displaying 9 characteristic arm repeats.
Since the isolation of PKP1, further desmosome-
associated armadillo proteins have been identified.
Moreover, the development of antibodies against pla-
kophilin 2 (PKP2) and plakophilin 3 (PKP3) has shown
that plakophilins are constitutive components of des-
mosomes.11–13 Plakophilins 1 and 2 differ from plako-
philin 3 in that they seem to be ubiquitously expressed,
including many cell types that are totally devoid of
desmosomes, in which they are detectable as constitu-
tive nuclear protein. In contrast, PKP3 has been found
only in desmosome-producing cell types (apart from
myocardium where it is not expressed).10,14 Moreover,
there is no nuclear expression of PKP3.15 PKP2 has
been identified to complex with beta-catenin itself,16
and also with both the largest RNA polymerase III
subunit and the transcription factor TFIIIB.17 It has
been reported that recombinant PKP1 has a stronger
affinity with the nucleus than PKP2 but, as yet, no
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Fig. 2. Molecular composition of a desmosome in human skin. A network of proteins spans the intercellular space and provides attachment to
the keratinocyte intermediate filaments within cells.
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interaction between PKP1 and a nuclear protein has
been demonstrated.16 Desmosomal PKP1 expression is
concentrated in the suprabasal layers of stratified and
complex epithelia, but is also present in the basal and
granular cell layers, although it is absent in the stratum
corneum. The tissue distribution of PKP2 is wider,
being found in desmosomes of all simple, complex and
stratifying epithelia as well as non-epithelial tissues
such as myocardium and lymph node follicles. PKP2 is
concentrated in the basal layers of most stratifying
squamous epithelia. PKP3 expression is more uniform
throughout the living epithelia layers and is seen in the
majority of simple epithelia and nearly all stratified
squamous epithelia possessing desmosomes, with the
exception of hepatocytes.

These basic data on the plakophilins have clinical
relevance in understanding human inherited disorders
of desmosomes that result in hair abnormalities.
Specifically, in 1997, McGrath et al. described the com-
plete ablation of PKP1 in patients with a novel, auto-
somal recessive disorder that was termed skin-fragility
ectodermal-dysplasia syndrome.18 Four further cases
describing complete ablation of this plakophilin have
been published,19–21 as well as two other cases of
partial loss due to aberrant splicing.22,23 In early life,
affected individuals exhibit skin fragility with trauma
induced erosions and blistering, especially around the
mouth and on the palms and soles. During childhood,

hyperkeratosis of palmoplantar skin develops and there
are plaques of crust-scale on the limbs and trunk.
Notably, the peri-oral erosions remain a prominent
feature. Scalp hair fails to develop normally and most
cases have total or near-total alopecia. The hair loss
also affects eyebrows, eyelashes and secondary sexual
hair. In those individuals with reduced (but not absent)
hair, molecular analysis usually reveals evidence for
retention of some in-frame PKP1 splice variants, i.e.
PKP1 is not totally ablated. Skin biopsies show widen-
ing of spaces between keratinocytes in the mid-spinous
layers on both light and transmission electron micros-
copy. The mechanism of blister formation, however, is
not true acantholysis. Rather, there is a ‘‘pinching off’’
of desmosomes with the plane of cleavage occurring
immediately on the cytoplasmic side of the desmo-
somes, consistent with the entirely intracellular distri-
bution of PKP1.24 Immunohistochemical labelling of
skin in skin-fragility ectodermal-dysplasia syndrome
reveals loss of PKP1 immunoreactivity in affected indi-
viduals’ skin. However, thus far, there have been no
reported studies on hair shaft microscopy or histo-
logical studies of hair follicles in this genodermatosis,
although PKP1 is preferentially expressed in the outer
root sheath of hair follicles.25 However, in inter-
follicular skin, the presence of mostly intact, if some-
what fragile, epidermis testifies to the concept that
PKP1 is a desmosomal accessory protein – desmosomes

Fig. 3. Clinical appearances of human hair disorders resulting from mutations in structural components of desmosomes. (a), (b) and (c) show
almost complete loss of scalp, eyebrow and eyelash hair resulting from autosomal recessive mutations in plakophilin 1. (d) illustrates localised
autosomal recessive hypotrichosis caused by mutations in desmoglein 4. In (e) there is woolly hair in a patient with autosomal recessive muta-
tions in desmoplakin.
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are still formed and retain several ultrastructural char-
acteristics,18–24 and the epidermis shows some cell-cell
adhesion without the presence of PKP1, albeit in a
compromised state. Early studies suggested that PKP1
binds keratin intermediate filaments in vitro.7–9 Indeed,
immunostaining for keratins in skin from patients lack-
ing PKP1 supports the possibility of a direct interaction,
in that it shows a perturbed distribution.18 Notably,
immunostaining of desmosomal cadherins and plako-
globin in PKP1-null skin shows no changes in distribu-
tion, while desmoplakin antibodies reveal additional,
local diffuse intracellular staining throughout suprabasal
layers.16 However, it now appears that the disruption in
desmoplakin distribution is primarily responsible for
the keratin aggregation, rather than a lack of PKP1-
keratin binding sites in PKP1-null epidermis. PKP1 re-
mains the first and only plakophilin to harbour muta-
tions resulting in a specific human skin/hair disease
phenotype. However, heterozygous mutations in PKP2
appear to be a common abnormality in arrhythmogenic
right ventricular cardiomyopathy.26

Desmoplakin: Autosomal Recessive Woolly Hair
with or without Cardiomyopathy

Plakins are dumb-bell-shaped molecules comprising
three domains, a central alpha-helical coiled-coil rod,
flanked by globular carboxy- and amino-terminal
domains that in desmoplakin interact with intermediate
filaments and armadillo/cadherin family members, re-
spectively.27 The plakin family started out as a small
group of intermediate filament-binding proteins, the
domain structure for which was initially characterized
for desmoplakin28 and observed in the hemidesmoso-
mal protein bullous pemphigoid antigen 1, and then
plectin. Envoplakin and periplakin, which are also
keratinocyte cell envelope proteins, have been added
to the group.29,30 The term ‘plakin’ has now been
coined to describe the entire group, which has further
expanded to include members harbouring actin- and
microtubule-binding domains, some of which lack
intermediate-filament-binding domain.31 The amino
terminus contains a series of predicted alpha-helical
bundles designated NN, Z, Y, X, W and Z, whereas the
carboxy-terminal intermediate-filament-binding domain
contains homology units A, B and C.

Nevertheless, the observation that desmoplakin dis-
tribution was altered in skin fragility-ectodermal dys-
plasia syndrome, a genetic skin disease associated
with hair abnormalities, raised the possibility that
other inherited hair disorders might harbour inherent
mutations in other desmosomal components. Given the
altered staining pattern in PKP1 deficiency, desmopla-
kin was an obvious candidate for mutations, notwith-
standing the fact that ablation of desmoplakin in mice

typically resulted in embryonic lethality.32 In 2000,
Norgett et al. described the first human autosomal re-
cessive mutation in the desmoplakin gene.33 The phe-
notype was a combination of woolly hair, keratoderma
and right ventricular cardiomyopathy, now referred to
as Carvajal syndrome, following an earlier clinical de-
scription of the same family.34 The pathogenic muta-
tion was a homozygous deletion close to the 3 0 end of
the gene, thus offering an explanation for the non-lethal
consequences compared to the mouse knockout. Of
note, the findings also suggested that the tail domain
of desmoplakin is not required for establishing tissue
architecture during development. Just before this auto-
somal recessive mutation in desmoplakin was reported,
autosomal dominant mutations had been described.35,36
In these cases, heterozygous nonsense or splice site
mutations led to desmoplakin haploinsufficiency and
a clinical phenotype of striate palmoplantar kerato-
derma but without any obvious abnormalities in scalp
or body hair. Subsequently, two further individuals with
autosomal recessive mutations in desmoplakin were
discovered. Both these cases were compound hetero-
zygotes for nonsense/missense combinations of muta-
tions,37 and the clinical features consisted of woolly
hair and keratoderma but no cardiomyopathy. In con-
trast, Rampazzo et al. reported a family with a hetero-
zygous missense mutation in desmoplakin that resulted
in arrhythmogenic right ventricular cardiomyopathy but
no skin or hair phenotype.38 Subsequently, Alcalai et al.
described a different homozygous missense mutation in
desmoplakin that led to cardiomyopathy as well as ker-
atoderma and woolly hair.39 Collectively, these muta-
tions provide insight into the functional domains of
desmoplakin and their relevance to skin, hair and heart
biology.

Plakoglobin: Naxos Disease

The discovery that mutations in desmoplakin could
be associated with skin, hair and cardiac abnormalities,
helped focus research on similar inherited disorders,
such as Naxos disease. The clinical features of this
autosomal recessive condition comprise arrhythmo-
genic right ventricular cardiomyopathy, woolly hair and
keratoderma. Naxos disease was initially mapped to
17q21,40 a locus that was known to include the plako-
globin gene. Plakoglobin is one of the desmosomal
armadillo family members and has most homology to
beta-catenin.41 Plakoglobin links the desmosomal cad-
herin tails to desmoplakin, but is also probably engaged
in lateral interactions.2 In further studies on Naxos dis-
ease, investigators identified a homozygous deletion
mutation close to the 3 0 end of the plakoglobin gene.42
Other cases of Naxos disease, with the woolly hair typ-
ically being present at birth and the same pathogenic
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2-base pair plakoglobin gene deletion, have also been
reported.43 Heterozygous carriers of this mutation have
been shown to have minor abnormalities on electrocar-
diography but no skin or hair changes have been
reported.44 Morever, not all cases of arrhythmogenic
right ventricular cardiomyopathy are caused by desmo-
somal gene mutations: some recessive cases have
mutations in the ryanodine receptor gene, but there are
no dermatological features in these.45

Desmoglein 4: Autosomal Recessive Hypotrichosis

Desmosomal cadherins are divided into two
subfamilies – desmogleins and desmocollins. There are
four main epidermis-specific desmogleins (Dsg1–4) and
three major desmocollins (Dsc1–3), all of which show
differentiation-specific expression. The intracellular
parts of these glycoproteins are attached to the keratin
filament network via desmoplakin, plakoglobin and
other macromolecules, the nature of which has been
gleaned from a combination of yeast two hybrid, co-
immunoprecipitation, recruitment assays in cultured
cells, and immunoelectron microscopy studies.2

Considering the roles of desmosomal plaque proteins
such as desmoplakin and plakoglobin in genetic con-
ditions associated with human hair abnormalities, the
transmembranous cadherins, the desmogleins and des-
mocollins, also seemed plausible candidates for further
mutations. The extracellular domains of these glyco-
proteins make up the extracellular core domain of the
desmosome and are expressed in a differentiation- and
tissue-specific manner.2 For example desmoglein-1 ex-
pression is restricted to certain specialized epithelia
such as epidermis, tongue, tonsil and oesophagus.
Within the epidermis, desmoglein-1 is expressed in
the upper spinous and granular layers, whereas
desmoglein-2 is distributed in the basal layer, and
desmoglein-3 is found in the basal and first suprabasal
layers. Calcium-dependent heterophilic adhesion occurs
between desmogleins and desmocollins of adjacent
cells, in addition to some homophilic adhesion.46 Spe-
cifically, the first three extracellular domains of desmo-
gleins (EC1–3) are required for heterophilic binding to
the first two extracellular domains (EC1 and EC2) of
desmocollins. Within the desmosome, the cytoplasmic
tails of the desmogleins bind ‘arm’ repeats 1–3 of
plakoglobin.

The possibility of human hair abnormalities arising
from mutations in desmosomal cadherins was empha-
sized by knowledge of the phenotype of bal (balding)
mouse, desmoglein-3 knockout mice, and epidermally
targeted truncated desmoglein-3 transgenic mice, all
of which have striking hair shedding and alopecia.2
However, no human mutations in desmoglein-3 have
been described. Moreover, autosomal dominant muta-

tions in desmoglein-1, leading to haploinsufficiency or
dominant-negative interference, give rise to a pheno-
type of striate palmoplantar keratoderma, identical to
the clinical features associated with autosomal domi-
nant desmoplakin haploinsufficiency.47 Indeed, seven
different heterozygous splice site or nonsense mutations
in desmoglein-1 have been reported, none of which
were found to be associated with any hair abnormal-
ities.47 However, the association between a possible
desmoglein mutation and an inherited hair disorder
was finally realised following characterisation of the
desmoglein-4 gene and protein.48 Human desmoglein-4
cDNA encodes protein of 991 amino acids with a mo-
lecular weight of 107.8-kDa. Desmoglein-4 shares 41%
identity with human desmoglein-1, 37% with human
desmoglein-2, and 50% with human desmoglein-3.49
Tissue expression of desmoglein-4 is restricted to
salivary gland, testis, prostate, and skin, where it is
expressed in both the suprabasal epidermis and exten-
sively throughout the matrix, precortex, and inner root
sheath of the hair follicle.48 Through genetic linkage
studies, the disorder localized autosomal recessive
hypotrichosis was mapped to the cadherin cluster on
18q12 and a homozygous 5-kb intragenic deletion in
desmoglein-4 was identified in two families.48 The hair
abnormalities in this disorder involve hypotrichosis
restricted to the scalp, chest, arms, and legs. Facial hair,
including the eyebrows and beard, is less dense, and
axillary, pubic hair, and eyelashes are spared. In addi-
tion, there are patches on the scalp where small papules
are visible that probably represent the consequences of
ingrown hairs. Histological analysis of scalp skin reveals
thin and atrophic hair follicles and hair shafts that are
often coiled up within the skin due to their inability to
penetrate the epidermis. There is also a marked swell-
ing of the precortical region resulting in the formation
of a bulbous ‘‘bleb’’ within the base of the hair shaft
similar to the shape of a lance, hence the name lan-
ceolate.48 These observations suggest that the role of
desmoglein-4 in the hair follicle is to co-ordinate the
transition from proliferation to differentiation. The
lanceolate hair (lah) mouse phenotype also results from
spontaneously-occurring mutations in desmoglein-4,48
thus providing additional insight into the significance of
this new desmosomal cadherin in hair biology. Fur-
thermore, disruption of a critical calcium-binding site
bridging the second and third extracellular domains of
desmoglein-4 (relevant to extracellular interactions) has
been reported in association with a naturally-occurring
lanceolate hair rat mutant.50 Although no human hair
or other diseases have been demonstrated with desmo-
collin gene family mutations, changes in desmocollin
1 immunoreactivity in anagen hair follicles, notably in
the Henle’s layer and inner root sheath cuticle, have
been shown during terminal differentiation.51 More-
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over, mice lacking desmocollin 1 display localised hair
loss as well as epidermal fragility.52

Corneodesmosin: Autosomal Dominant
Hypotrichosis Simplex

In normal epidermal differentiation, formation of the
cornified cell envelope involves cross-link formation
between plakins and involucrin catalysed by trans-
glutaminase. Other desmosomal proteins are then also
cross-linked, forming a scaffold along the entire inner
surface of the plasma membrane. Ceramides from the
secreted contents of lamellar bodies are then esterified
onto glutamine residues of the scaffold proteins. The
cornified cell envelope is reinforced by the addition of a
variable amount of small proline rich proteins, repetin,
trichohyalin, cystostatin alpha, elafin and LEP/XP-5
(skin-specific protein).53 Although most desmosomal
components are degraded, keratin intermediate fila-
ments (mostly K1, K10 and K2e) may be cross-linked to
desmoplakin and envoplakin remnants. Together these
assembly and degradation events result in durable,
flexible but dead cells that have vital mechanical and
water-permeability barrier functions. One important
desmosome-associated protein expressed during ter-
minal differentiation is corneodesmosin.54 This glyco-
protein is expressed in the upper epidermis and in the
inner root sheath of the hair follicle. Intriguingly, the
autosomal dominant disorder hypotrichosis simplex of
the scalp has been mapped to 6p21 and nonsense
mutations have been identified in the corneodesmosin
gene in three families.55 In this disorder, affected indi-
viduals have normal hair in early childhood but experi-
ence progressive loss of scalp hair starting in the middle
of the first decade and go on to almost complete bald-
ness by the third decade. The body hair, beard, eye-
brows and axillary hair are normal. Histologically, there
is a loss of cohesion in the inner root sheaths. More-
over, aggregates of abnormal corneodesmosin accumu-
late around hair follicles and in the superficial dermis
and it has been suggested that these aggregates are
toxic to the hair follicle cells and that hypotrichosis
simplex of the scalp is a disease associated with protein
misfolding.53

Abnormalities in corneodesmosin, albeit secondary,
have been reported in Netherton syndrome, an auto-
somal recessive disorder associated with hair mal-
formation and a skin barrier defect.56 Although the
causative pathology involves mutations in the SPINK5
gene, which encodes the putative proteinase inhibitor
LEKTI, evidence for premature proteolysis of cor-
neodesmosin has been documented.56 However, an-
other desmosomal protein, desmoglein 1, has also been
shown to be degraded as an early change in the devel-
oping skin pathology in this genodermatosis.57

Summary

There has been considerable progress over the last
eight years in identifying abnormalities in several com-
ponents of desmosomes. These discoveries have often
highlighted novel or unusual hair phenotypes, including
several conditions not previously thought to have any
link to desmosomes whatsoever. The challenge now is
to continue to define genotype-phenotype correlation
to improve understanding of the spectrum of the inher-
ited desmosomal disorders. Even more challenging is
the task of exploring disease mechanisms and trying to
understand the role desmosome proteins have in skin
and hair biology, including aspects of adhesion, dif-
ferentiation, migration, proliferation and development.
These areas of molecular and cell biological research
are likely to resolve more hair disease mysteries and
provide several further intriguing new discoveries in
years to come.
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