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Introduction

   Hepatitis C virus (HCV) belongs to the Hepacivirus 
genus of the Falviviridae family. It is a spherical particle, 
55 to 65 nm in diameter, with an envelope, and consists 
of the genome of a 9.6-kb plus strand RNA. It has short 
untranslated regions at both the 5’- and 3’- termini, and 
the middle region, which accounts for about 95% of the 
whole genome, encodes a precursor protein consisting of 
roughly 3,010 amino acid residues. The coding regions 
of viral structural proteins such as core as well as E1 and 
E2 are located at the N-terminus, while the non-structural 
proteins NS2, NS3, NS4A, NS4B, NS5A, and NS5B are 
situated at the middle region near the C-terminus.1, 2  

HCV is categorized according to 6 genotypes and is fur-
ther classified into several subtypes.
   HCV is transmitted through blood and it often causes 
persistent infection. Post-infection symptoms are often 

mild. Infected subjects develop chronic hepatitis from a 
carrier state, and eventually, liver cirrhosis and hepato-
cellular carcinoma (HCC) over period of up to 30 or 
more years. In Japan, it is estimated that there are 1.5 
million HCV-infected people, and infection is more com-
mon among the elderly than among younger individuals. 
About 30,000 patients die of HCC associated with HCV 
infection, and HCC is currently ranked as the fourth 
leading cause of death. The ideal treatment is eradication 
of HCV from the body, and a combination of interferon 
(IFN) and ribavirin (RBV) is the current mainstream reg-
imen.3
   Presence of the hypervariable region (HVR) at the 
N-terminus of the E1/E2/NS1 regions which is responsi-
ble for surface structure, is thought to play a role in per-
sistent HCV infection. Nevertheless, heterogeneity of the 
HVR does not correlate with hepatitis activity.4 With re-
gard to HCV eradication by IFN, analysis of the viral 
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sensitivity to IFN revealed the presence of the IFN sensi-
tivity-determining region (ISDR), which influences sen-
sitivity to IFN, at the center of NS5A, a non-structural 
protein of HCV.5, 6  Meanwhile, the number of amino 
acid mutation in the ISDR has been reported to have a 
significant negative correlation with the amount of HCV 
RNA.7
   Since the replicon system has been developed, virolog-
ical aspects of HCV including its life cycle were uncov-
ered, and development of this system and more recently 
of a cell culture system has enabled the development of 
HCV-specific inhibitors and quantitative measurement of 
antiviral potency. Many of the newly developed inhibi-
tors are under investigation in pre-clinical and clinical 
trials, and these specific inhibitors will improve treat-
ment opportunities of patients with chronic hepatitis C, 
especially in difficult-to-treat patients including patients 
who do not respond to Peg-IFN and RBV combination 
therapy. In this mini-review, we introduced the HCV rep-
licon system and summarized newly developed virologi-
cal and clinical discoveries, following to the develop-
ment of replicon and cell culture systems.

Cells Replicating an HCV 
Gene-replication Unit (replicon)

   In 1989, a group led by Houghton et al. at Chiron (a 
subsidiary of Novartis AG, Basel, Switzerland) succeed-
ed in cloning the HCV genome for the first time.8  In 
1997, Rice et al. successfully established an infectious 

clone from cloned cDNA, which induced acute hepatitis 
in chimpanzees.9 Chimpanzees which are the only reli-
able animal model for HCV infection, are difficult to ob-
tain and expensive to maintain and are therefore not suit-
able for drug screening studies. As a result, the develop-
ment of efficient replication systems in cultured cells has 
been eagerly anticipated. 
   In 1999, Bartenshalger et al. established the first cul-
ture system in which HCV subgenomic RNA replicated 
and maintained itself and in which HCV gene replication 
was efficiently reproduced.10 This system was referred to 
as an HCV replicon system. The structure of HCV repli-
con RNA is shown in Fig. 1. In HCV subgenomic RNA, 
a structural protein region encoding the viral particle is 
replaced with the code sequence of aminoglycoside 
phosphotransferase (Neor) that detoxifies neomycin har-
boring cytotoxicity. The internal ribosome entry site 
(IRES) derived from encephalomyocarditis virus 
(EMCV) is inserted at the down-stream region of the 
Neor gene. Due to this sequence, translation starts within 
RNA, and non-structural protein, which is located down-
stream and involved in HCV gene replication, is effi-
ciently translated. 
   RNA synthesized in vitro can be introduced into HCC-
derived HuH7 cells, and with RNA introduced cells can 
be selected with neomycin. The HCV genome sequence 
that can self-replicate in cells, and cells that enable the 
self-replication, are selected and replicon cells are thus 
obtained (Fig. 2). To date, similar replicon cells have 
been established with several different HCV genome se-
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quences.11-13 Thus, the development of the HCV repli-
con system has enabled the analysis of virus genome 
replication at the cellular level.14

Research on the HCV Genome Replication System

   Research on HCV genome replication started with 
analysis of the RNA genome structure in replicon cells. 
To date, it has been determined that a phenomenon called 
adaptive mutation occurs in the RNA genome in cultured 
cells.15 This is presumed to be a result of selected amino 
acid mutation in HCV protein so that RNA can efficient-
ly replicate and proliferate in cultured cells. The RNA 
structure required for genome replication has been iden-
tified by artificial introduction of mutation (e.g., various 
deletion mutations) into HCV subgenome RNA. Further-
more, replication systems are currently indispensable for 
elucidation of the pathogenesis of HCV infection and de-
velopment of antiviral drugs. We previously found dif-
ferences in specific sites in the HCV NS5B region be-
tween patients that did or did not respond to IFN-RBV 
combination therapy,16 and are now exploring alterations 
using the replicon system in vitro.17

Full-length HCV RNA Replication System

   While the subgenomic replicon in vitro system is used 
to express non-structural proteins necessary for replica-
tion, not only non-structural proteins but also structural 
proteins are actually expressed in vivo. The influence of 
HCV on host cell factors, such as IFN, other cytokines, 

and signal transduction, are complex events mediated by 
full-length HCV proteins. Different full-length replicon 
RNAs have been produced by some research groups.18,19

In the full-length HCV RNA replication system, the pres-
ence of double strand RNA (dsRNA), consisting of the 
HCV RNA plus strand and the minus strand, an interme-
diate replication product, enables easier evaluation of the 
influence of HCV, including the effect of dsRNA, on 
host factors, compared with a replicon system with non-
structural regions using a variety of promoters. Since 
structural proteins are required for the production of viral 
particles, full-length HCV RNA replication systems have 
advanced research on in vivo properties of the virus, in-
cluding packaging, budding, and infection20-24 (Fig.3).

Structure of the Replication Complex

   Intracellular environments for HCV RNA synthesis 
and replication were examined in the subgenome repli-
con system, and it was found that replicon HCV RNA 
was localized in the cell membrane structure, especially 
at endoplasmic reticulum membrane, and partly in the 
region surrounded by non-structural protein-like lipid 
membrane, while most of the non-structural protein was 
present on the cytoplasmic side of the lipid membrane.24

This suggests that replicon RNA replicates in a structure 
surrounded by lipid membrane, i.e. lipid raft. Similar re-
sults have also been reported with regard to RNA repli-
cation of plant viruses such as bromomosaic virus. Intra-
cellulcar environments surrounded by lipid membrane 
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Fig. 2  Outline of HCV replicon system.  Subgenomic replicon RNAs are produced from plasmid including T7 promoter by in vitro
transcription using T7 RNA polymerase. These RNAs are transfected into the human hepatoma cell line Huh-7. Only cells in which 
the replicon self-replicates will carry the gene encoding neomycin phosphotransferase, which inactivates G418, to become resistant to 
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are potentially those for the HCV genome replication 
complex.26,27

JFH-1 Strain Replicon and Production of Infection
 Virus Particles

   Wakita et al. cloned an HCV gene from serum of a pa-
tient with fulminant hepatitis, a rare complication of type 
C chronic hepatitis, and designated it as the JFH-1 strain 
genotype 2a. Subgenomic28 and full-length replicons29

were constructed from the JFH-1 strain, and production 
of viral particles in the culture supernatant of HCV RNA 
replicating cells was confirmed. In addition, an HCV 
culture system with even higher infection efficiency was 
established by combination of the JFH-1 strain and cured 
cells established from replicon cell experiments.30, 31 

However, the onset of fulminant hepatitis is extremely 
rare in even HCV genotype 2a cases, suggesting that 
JFH-1 strain was established from a very rare clinical 
case. The viral particles released from the JFH-1 replicon 
can infect chimpanzees but do not cause hepatitis. The 
establishment of JFH-1 strain which forms infectious vi-
ral particles opened a black box of HCV virology and bi-
ology. The role of CD81 and heparin sulfate proteogly-
can on HCV entry into the cell has been demonstrated 
using this system recently.31 On the other hand, in Japan, 
the most prevalent HCV subtype is genotype 1b, and the 
virus is most resistant to eradication by IFN in patients 

with this genotype (1b). It is anticipated that a replicon 
that produces infectious viral particles derived from gen-
otype 1b HCV will be established. 

Research and Application of Replicons and the
 Full-length HCV RNA Replication System:

 Screening of New Drugs with Replicons

   Pegylated-IFN (Peg-IFN) in combination with RBV is 
the current mainstream treatment for chronic hepatitis C, 
however, such therapy has several limitations which re-
main to be overcome. Although viral eradication rates 
have been improved by the combination of Peg-IFN and 
RBV compared with IFN monotherapy, the treatment is 
effective in only half of patients infected with genotype 
1b HCV with a high viral load. HCV dynamics at the 
early treatment phase is associated with treatment effica-
cy Peg-IFN and RBV combination therapy, and early 
suppression of viral replication is thought to be impor-
tant.33 In addition, adverse effects and lower response 
rates can be a hindrance in the treatment of elderly pa-
tients.34 To solve these problems, screening with repli-
cons is being used for the development of new anti-HCV 
agents to replace Peg-IFN and RBV in clinical practice.

<Development of new treatments targeted at host fac-
tors>
   Shimotohno et al. reported that cyclosporine A (CyA), 
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an immunosuppressant widely used in clinical practice, 
suppressed HCV replication in the replicon system.35 

This HCV replication suppression is not related with the 
cytotoxicity of CyA or the function as an immunosup-
pressant, but is a specific action of the replicon cells 
against HCV protein. The underlying mechanisms, bind-
ing to cyclophyllin and inhibition of peptidylprolyl isom-
erase enzyme activity, are thought to inhibit HCV repli-
cation.36, 37 It has been reported that CyA is effective 
against HCV in vivo,38, 39 which has generated clinical 
interest.40

   As mentioned previously, the HCV replication com-
plex is created in the endoplasmic reticulum membrane, 
and an HCV life cycle is formed. It has been suggested 
that HCV replication can be regulated by targeting sev-
eral molecules in the lipid raft, consisting of high-fluidity 
lipids such as saturated fatty acids, cholesterol and sphin-
gomyelin, in the area of high-fluidity portion formed 
with unsaturated fatty acid bi-layered membrane. One 
study reported suppression of HCV replicon replication 
by myriocin, which interferes with the sphingomyelin 
synthesis pathway.41 In addition, it was reported that 
3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reduc-
tase inhibitors suppress HCV replicon replication.42

<Development of new treatments targeted at viral fac-
tors>
   The development of new drugs targeted at NS3 encod-
ing serine protease involved in viral replication38 and 
NS5B encoding RNA polymerase43 is another strategy 
that has been pursued. These drugs, which are expected 
to directly exert antiviral activity, referred to as specifi-
cally-targeted antiviral therapies (STATCs). It has been 
reported that serine protease activity encoded by NS3 in-
hibits not only the processing of viral protein but also 
IFN signal transduction44, and clinical trials are ongoing 
for clinical application of drugs targeted at this site. 
VX95045, 46 and SCH50303447, 48 are among the NS3 
protease inhibitors under development. Since HCV is 
highly mutatable, monotherapy using one of these drugs 
results in immediate appearance of a resistant clone.49,50

Therefore, clinical trials on VX950 with or without IFN 
and in combination with RBV are ongoing in the U.S. 
and European countries. Similarly, clinical trials of 
SCH503034 with and without IFN are underway in pa-
tients refractory to a combination of Peg-IFN-α2b and 
RBV.  
   NM283, an RNA-dependent RNA polymerase inhibi-
tor, was found to be effective in chimpanzees and cul-
tured cells. However, since monotherapy with this agent 
was not fully effective, combination with IFN was re-
quired and as a result, adverse effects due to high-dose 
administration were reported.51,52

   Since toll-like receptor 9 agonists likely exert antiviral 
activity by enhancing intrinsic IFN production, their ad-

ministration in combination with Peg-IFN and RBV im-
proved early virological response rates.53 Moreover, in-
hibition of HCV replicon with siRNA has been report-
ed.54 Treatment with ribozyme and antisense oligonucle-
otides seems to be effective in replicons, however, be-
cause of issues with stability and drug delivery, they 
have not yet been sufficiently developed for clinical use 
as anti-HCV agents. 
   Table 1 summarized several treatment targets and on-
going preclinical and clinical trials. 

Regulation of Host Genes by HCV Protein

   To date, it has been reported that viral proteins, such as 
E1A55 and E1B56 of adenovirus, human immunodefi-
ciency virus type 1 Tat protein,57 HTLV-1 Tax protein,58

human papilloma virus E659 and E760 protein, regulate 
transcriptional activity of host cells by influencing tran-
scription regulating factors such as CBP/p300, PCAF, 
histone deacetylase complex, and SRC-1. On the other 
hand, it has been reported that HCV core protein upregu-
lates transcription of retinoic acid receptor-α (RAR-α) by 
isolating Sp110b, a transcriptional inhibitor of RAR-α, 
from intranuclear space to the surface of endoplasmic re-
ticulum.61 RAR-α is known as a receptor for retinoic ac-
id-induced apoptosis. Similarly, it is possible that HCV 
protein regulates various other host genes.     

HCV and Carcinogenesis (Rb gene and HCV)

   The precise mechanism underlying the development 
from HCV infection to carcinogenesis has not been elu-
cidated, but a relationship with several oncogenes has 
been proposed. Unlike hepatitis B virus (HBV), integra-
tion of the HCV gene into host cell DNA has not been 
recognized. Therefore, there are possibilities that HCV 
protein produced by HCV infection affects functions of 
host cells and heightens carcinogenicity.    
   Resent studies have revealed that HCV infection af-
fects the cell cycle regulating protein Rb. Rb protein af-
fects cells in the G1-S phase62 and inhibits transcription 
factor E2F.63  In addition, the protein is well known as a 
tumor suppressor gene, and mutation in the Rb gene has 
been reported in lung and ovarian cancer cells.64, 65 We 
reported that the Rb gene bound to a specific site in the 
NS5B-encoding polymerase required for HCV replica-
tion, which suppressed the expression of Rb protein.66 

The HCV sequence for binding was the same as the se-
quence previously reported in adenovirus67 and papillo-
ma virus68 that bound the Rb gene.69 These oncogenes 
are thought to inhibit Rb gene function and the LxCxE 
motif by directly binding with them (Fig. 4 and 5), which 
suggests the involvement of HCV in carcinogenesis.  
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Target at viral factors Virus entry 

Post translation processing 

HCV replication 

HCV RNA translation

anti E2monoclonal antibody
      HCV-AB(XTL)68
NS3/4A serine protease inhibitors
      VX950 (Telaprevir; phase 2), SCH503034       
      (Boceprevir; phase 2), ITMN-191 (phase 1)
NS5B RNA dependent RNA polymerase inhibitors
(a) nucleoside analogues
       NM283 (Valopicitabine; phase 2), R1626 (prodrug ofR1479; 
      phase 2), MK-608 (preclinical), R1656, R7128 (preclinical)
(b) non-nucleoside analogues
       HCV-796 (phase 2), BILB1941 (phase 1), A-837093 
      (preclinical), GS-9190 (phase 1)
NS5A inhibitors
      A-831 (phase 1), A-689 (preclinical)
ribozyme
antisense oligonucleotide
siRNA

Target at host factors Virus entry 

Replication

Production of IFN
Virus particle release  

hepatitis C immunoglobulin
      Civacir
Cyclosporin inhibitors 
      DEBIO-25 (phase 1), NIM811 (preclinical)
Myoricin, 
HMG-CoA reductase inhibitors
TLR9 agonist 
ER glucosidase inhibitors
      Celgosivir (preclinical)

In addition of these therapies, several interferons have been on going as clinical studies (Albinterferon; phase 3, Pegamax; phase 1, 
Locteron; phase 1/2, Omega interferon; phase 2).

Table 1 Targets of therapy and emerging therapies in HCV 
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Conclulsion

   The aim of HCV eradication is to eventually reduce the 
occurrence of HCC. It is therefore important to elucidate 
the mechanisms by which HCV infection precipitates the 
onset of HCC. Clinical research in the past years has fo-
cused on the improvement of IFN-based treatment regi-
mens. HCV-specific antiviral compounds, some of which 
have been developed by investigation using the replicon 
system, are a new perspective in the treatment of chronic 
hepatitis C. Since the viral RNA-polymerase possesses a 
high error rate, HCV variants are continuously produced 
during replication, and selection of drug-resistant HCV 
strains may occur when viral replication continues. On 
the other hand, innate and adaptive immune response 
play an important role in the control of HCV infection, 
but these responses are hampered by several mechanisms 
in HCV infection, resulting a weak immunologic re-
sponse for complete elimination of HCV infected hepa-
tocytes. The replicon system is not a sufficient tool for 
investigating such an immunological mechanism. A po-
tentially safe and stronger treatment for chronic hepatitis 
C by combination of several drugs with different mecha-
nisms is expected especially in Japan, where the patients 
is becoming older, and in vitro replicon system will be 
still expected to produce a useful information for making 
a new drug design. 
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