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Introduction

Calcium channel blockers (CCBs), which target volt-
age-dependent Ca channels, are widely used in the field 
of hypertension therapy and rank second in the pharma-
ceutical market for hypertension treatment. Indeed, 
CCBs are believed to have less serious adverse effects 
than other antihypertensive drugs and are recognized as 
reliable drugs in terms of lowering blood pressure. A 
growing body of evidence, however, points to a problem 
associated with kidney function. Conventional CCBs, in-
cluding nifedipine, diltiazem and amlodipine, elicit 
marked increases in the glomerular filtration rate and re-

nal blood flow1-3 by dilating afferent arterioles preferen-
tially,4-8 whereby glomerular hypertension and subse-
quent renal injury are expected to ensue unless systemic 
blood pressure is sufficiently controlled.9-12  

Voltage-dependent Ca channels are widely distributed 
throughout the body and play a critical role in the main-
tenance of vascular tone. Ca channels are classified into 
several subtypes, including L-type, T-type, N-type, P/Q-
type and R-type Ca channels based on their electrophysi-
ological properties;13 among these subtypes, the L-type 
Ca channel has been most extensively investigated for 
elucidation of its function. The blockade of L-type Ca 
channels dilates the systemic vasculature and substan-
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tially reduces blood pressure. In the renal microvascula-
ture, however, the vasodilator response to L-type CCBs 
is observed only in preglomerular microvessels (e.g., af-
ferent arterioles), whereas efferent arterioles are refrac-
tory to the dilator action of these agents.4-8 The renal 
microvascular response thus supports speculation that 
glomerular hypertension may develop following the ad-
ministration of these agents.  

In contrast, T-type Ca channels have been identified as 
an important molecular target in various organs, and 
they function as a part of physiological and/or patho-
physiological activities.1 4 In the cardiac sinus node, 
T-type Ca channels participate in the generation of the 
pacemaker potential.15 In the kidney, several Ca channel 
subtypes are reported to be present, including L-type, 
T-type, N-type and P/Q-type Ca channels.16, 17 Recently, 
much interest has been focused on the role of T-type Ca 
channels in the kidney. It has been demonstrated that the 
blockade of T-type Ca channels exerts a beneficial action 
on kidney function in chronic kidney disease (CKD), in-
cluding reduction in proteinuria18-22 and improvement 
in kidney survival.23 Collectively, the role of Ca chan-
nels may differ depending on the subtype expression 
within the kidney, and the specific blockade of Ca chan-
nel subtypes would be anticipated to exert a salutary ac-
tion on the renal microvasculature.  

In this article, we review the role of Ca channel sub-
types in renal physiology. Furthermore, the effects of the 

blockade of these Ca channels on CKD are also sur-
veyed.

1. Ca Channel Subtypes

Voltage-dependent Ca channels are classified into L-, 
P/Q-, N-, R- and T-type subtypes based on their pharma-
cological and electrophysiological properties; they are 
made up of heteromeric multisubunits, including α1, α2, 
β, δ and γ (skeletal muscle).13 Among these, the α1 sub-
unit possesses the main characteristics of the Ca channel, 
such as the ion-conducting pore, ion selectivity and volt-
age sensitivity, and is encoded by the CACNA1 gene 
family, which consists of 10 genes (Fig. 1). In the kid-
ney, a number of Ca channels with various α1 subunits, 
including CaV2.1 (α1A), CaV1.2 (α1C), CaV1.3 (α1D), 
CaV3.1 (α1G) and CaV3.2 (α1H), are expressed and func-
tion as L-type (CaV1.2, CaV1.3), T-type (CaV3.1, CaV3.2) 
and P/Q-type (CaV2.1) Ca channels;13 precise or orga-
nized electrophysiological analyses, however, have not 
been conducted because the kidney contains divergent 
cell populations.  Furthermore, the kidney is supplied 
with numerous nerve endings that possess N-type (α1B) 
Ca channels. Interestingly, P- (CaV2.1a) and Q-type 
(CaV2.1b) Ca channel subunits are splice variants of a 
single gene (i.e., CACNA1A) and are expressed in the 
afferent arteriole.16 Although splice variants have been 
demonstrated in neuronal and cardiac cells24 as well as 

Fig. 1  Classification of voltage-dependent Ca channels.
CCB; calcium channel blocker.
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in vascular smooth muscle cells from atherosclerotic tis-
sues,25 whether these variants affect the renal function 
remains undetermined.

2. Characterization of Renal Microvessels

Afferent and efferent arterioles exist adjoining the 
glomerulus; they adjust their vascular tone in response to 
various vasoactive stimuli. The fact that glomerular fil-
tration exhibits divergent changes depending on the va-
soactive stimuli applied implies that the responsiveness 
of afferent and efferent arterioles to these stimuli differs. 
For example, atrial natriuretic peptide causes afferent ar-
teriolar dilation and efferent arteriolar constriction.26, 27 
Furthermore, elevated renal perfusion pressure28, endo-
thelin29 and high K levels30 elicit predominant constric-
tion of the afferent arteriole.  

It has been demonstrated that voltage-dependent Ca 
channels functionally prevail in the afferent arteri-
ole.4, 7, 30-33 High K-induced membrane depolarization 
selectively constricts the afferent arteriole, whereas the 
efferent arteriole is relatively insensitive to such depolar-
ization.30, 32 Furthermore, Ca channel agonists (e.g., Bay 
K-8644), which directly activate voltage-dependent Ca 
channels, cause preferential afferent arteriolar constric-
tion.33 Carmines, et al.32 directly assessed the intracellu-
lar Ca concentration ([Ca2+]i) of isolated rabbit glomeruli 
with attached afferent and efferent arterioles.  They dem-
onstrated that high K-induced depolarization elevated 
[Ca2+]i in afferent but not in efferent arterioles. They also 
demonstrated that the inhibition of voltage-dependent Ca 
channels by nifedipine completely prevented the high 
K-induced rise in [Ca2+]i.  

When administered in vivo, CCBs, including nifedip-
ine,4, 34 nicardipine35 and verapamil,4, 7 cause a greater 
increase in glomerular filtration rate than that in renal 
plasma flow, resulting in an elevated filtration fraction.  
These observations suggest predominant action on the 
afferent arteriole. However, in the in vivo setting, sys-
temic blood pressure is decreased, which may confound 
the effect of CCBs on renal arterioles. To eliminate the 
pressure-induced changes in vascular tone, Loutzenhiser, 
et al.5, 36-38 used the isolated perfused rat normal kidney 
model. This model provides constant renal perfusion 
pressure, whereby the myogenic tone of renal microves-
sels is unaltered. In a series of the experiments, Loutzen-
hiser, et al. found that under angiotensin II- or norepi-
nephrine-induced vasoconstrictor tone, CCBs including 
nifedipine, nisoldipine, diltiazem and amlodipine caused 
greater increases in glomerular filtration rate than those 
in renal plasma flow, resulting in exaggerated increases 
in filtration fraction.5, 36-38 Thus, these observations 
again support the finding that CCBs act predominantly 
on the renal preglomerular vessels.  

Recent advances in laboratory techniques have facili-
tated more detailed direct observation of the renal micro-

circulation.27-30, 39-45 Casellas and Navar43 developed 
an in vitro technique that allows direct visualization of 
the juxtamedullary nephron circulation. In their experi-
ments, both verapamil and diltiazem potently inhibited 
afferent arteriolar vasoconstriction, whereas efferent ar-
terioles were relatively refractory to the vasodilator ac-
tion of these agents.46 Similarly, Ito, et al.41,42 developed 
the isolated renal cortical microvessel model and found 
that nifedipine predominantly dilated the afferent arteri-
ole.47 Loutzenhiser and Epstein developed a model of 
the isolated perfused hydronephrotic kidney that facili-
tated direct observation of the renal microvasculature 
under defined in vitro conditions.27-30 Using this model, 
we demonstrated that both dihydropyridine-class (e.g., 
nifedipine, nicardipine and amlodipine) and benzothiaz-
epine-class (e.g., diltiazem) CCBs reversed the angioten-
sin II-induced constriction of the afferent arteriole, 
whereas the efferent arteriole was refractory to the vaso-
dilator action of these antagonists.48, 49 Furthermore, us-
ing intravital pencil-lens CCD camera videomicroscopy, 
we observed that nifedipine caused predominant dilation 
of the afferent arteriole in the canine kidney (Fig. 2A).50 
Of note, we also have shown that nifedipine elevates the 
filtration fraction (i.e., glomerular filtration rate/renal 
plasma flow) in dogs50 (Fig. 2B). Since this parameter 
nearly parallels the glomerular capillary pressure, our 
findings suggest a potential risk for the development of 
glomerular hypertension as a result of nifedipine admin-
istration. 

The preferential afferent arteriolar action of CCBs sug-
gests the predominant distribution of L-type Ca channels 
in this vessel (Fig. 3). Indeed, Hansen, et al.1 7 have 
demonstrated that mRNA encoding CaV1.2 (α1C) L-type 
Ca channel subunits is expressed in afferent arterioles 
from rabbit cortical preglomerular arterioles. In contrast, 
this subunit was not found in cortical efferent arterioles, 
although it was present in juxtamedullary efferent arteri-
oles. Similarly, Ono, et al. [personal communication] 
have recently demonstrated that CaV1.2 is prevalent in 
the rat afferent arteriole, whereas the efferent arteriole 
lacks this subunit. These observations thus endorse the 
functional evidence indicating preferential activity of 
L-type Ca channels in the afferent, but not in the effer-
ent, arteriole.  

In summary, it is reasonable to conclude that voltage-
dependent Ca channels predominate in the afferent arte-
riole; in contrast, these channels are sparse or functional-
ly silent in the efferent arteriole.

3. Role of T-type and N-type Ca Channels 
in Renal Microvessels 

Unlike the conventional types of CCBs, novel CCBs 
developed in Japan (e.g., manidipine and efonidipine) 
are reported to dilate both afferent and efferent arteri-
oles.8, 10 Using microdissected renal arterioles, Arima, et 
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al.47 reported that manidipine caused efferent as well as 
afferent arteriolar dilation. Furthermore, Takabatake, et 
al.51 reported that in a rat micropuncture study, efonidip-
ine reduced pre- and postglomerular capillary resistance. 
Finally, we demonstrated that several CCBs, including 
manidipine, nilvadipine, benidipine and efonidipine, 
cause substantial dilation of efferent arterioles in the iso-
lated perfused rat hydronephrotic kidney.48, 52, 53 Since 
traditional CCBs act on L-type voltage-dependent Ca 
channels, and these channels are predominant in the af-
ferent arteriole,30, 53 the effects on the efferent arteriole 
by these CCBs are most likely attributed to additional 
actions of these CCBs, not due to the class effects of 
these agents. 

Recently, a pharmacological study has demonstrated 
that efonidipine possesses blocking activity toward 
T-type, as well as L-type, voltage-dependent Ca chan-
nels.54 T-type Ca channels are distributed substantially in 
several parts of the microvasculature, including mesen-
teric and cremaster arterioles, and the blockade of these 

channels by selective T-type CCBs, e.g., mibefradil, in-
hibits the vasoconstriction of these arterioles.  In the re-
nal microvasculature, Hansen, et al.17 demonstrated that 
T-type Ca channels are prevalent in juxtamedullary ef-
ferent arterioles, as well as in afferent arterioles of super-
ficial and juxtamedullary nephrons. Furthermore, using 
in situ hybridization, Ono, et al. recently identified the 
CaV3.1 subunit (an α1 subunit of T-type Ca channels) in 
superficial efferent as well as in afferent arterioles [per-
sonal communication]. Similarly, using the micropunc-
ture technique, Nakamura, et al.55 found that mibefradil 
decreased both afferent and efferent arteriolar resistance 
in kidneys from spontaneously hypertensive rat (SHR) 
kidneys. Recently, Ozawa, et al.56 directly visualized ef-
ferent arteriolar dilation by some CCBs that possess 
blocking activity toward T-type Ca channels. Both mibe-
fradil and nickel chloride potently reverse the angioten-
sin II-induced constriction of efferent arterioles in the 
isolated perfused hydronephrotic rat kidney model.  Fur-
thermore, the intravital pencil-type CCD camera tech-

Fig. 2  Effects of various Ca channel blockers on in vivo renal microvessels and renal hemodynamics in dogs.
(A) CCBs with preferential blockade of L-type Ca channels (nifedipine) cause predominant afferent arteriolar action, whereas 
CCBs with blocking activity toward L-/T-type Ca channels (efonidipine and mibefradil) dilate both afferent and efferent arterioles.  
Cilnidipine, an L-/N-type Ca channel blocker, dilates both microvessels, although the response is greater in the afferent arteriole (from 
Honda M, et al.50). (B) The changes in filtration fraction, a marker for glomerular pressure, vary depending on the CCB used (from 
Honda M, et al.50). #, p=0.05 vs. baseline; *, p<0.05 vs. baseline; **, p<0.01 vs. baseline; §, p<0.05 vs. nifedipine; †, p<0.05 vs. 
afferent arterioles.
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nique revealed that efonidipine and mibefradil provoke 
efferent as well as afferent arteriolar dilation in dog kid-
neys in vivo50 (Fig. 2A). Collectively, these novel find-
ings strongly suggest a critical role for T-type Ca chan-
nels in mediating the efferent arteriolar tone.  

N-type Ca channels are present at sympathetic nerve 
terminals that are distributed along afferent and efferent 
arterioles. It has been reported that cilnidipine, an 
N-type CCB, reduced both afferent and efferent arterio-
lar resistance in a renal micropuncture study of nitro-L-
arginine methylester-treated SHR57 and dilated both ar-
terioles in the in vivo hydronephrotic kidney.58 Similarly, 
using an intravital CCD camera, we found that cilnidip-
ine causes substantial vasodilation of efferent, as well as 
afferent, arterioles in the canine kidney in vivo (Fig. 2A). 
This class of CCB is characterized by a unique pharma-
cological action, i.e., inhibitory action on norepinephrine 
secretion59, 60 and neurally stimulated renal vasoconstric-
tion.61 It is noteworthy that, in the in vitro isolated per-
fused hydronephrotic kidney, cilnidipine elicits predomi-
nant action in the afferent arteriole.62 It was inferred, 
therefore, that the integrity of the sympathetic nerve is 
required for the full activity of N-type CCBs. 

The vasodilator action of T-type and N-type CCBs on 
renal microvessels favors reduced glomerular capillary 
pressure. Indeed, we have shown that both T-type (efoni-
dipine and mibefradil) and N-type CCBs (cilnidipine) re-
duce or tend to decrease the filtration fraction, an obser-
vation contrasting the effects of nifedipine (Fig. 2B).50

4. Role of CCBs in the Progression of Renal Injury

The glomerular hemodynamic effects of L-type CCBs 
suggest that these CCBs fail to correct glomerular hyper-
tension in certain experimental conditions. The overall 

effect of L-type CCBs on glomerular hemodynamics is 
determined by the balance between the reduction in af-
ferent arteriolar resistance and the fall in systemic blood 
pressure, and the changes in these two factors may vary 
depending on the experimental settings, the magnitude 
of depressor activity, and the types of CCBs used.  For 
example, verapamil is reported to reduce proteinuria and 
protect against renal injury in remnant kidney mod-
els.63, 64 In contrast, there have been several reports sug-
gesting deleterious effects of dihydropyridine-class 
CCBs in renal diseases.9-12, 65-67 Wenzel, et al.66 dem-
onstrated that nitrendipine actually increased proteinuria 
and glomerulosclerosis in a two-kidney, one-clip model 
of hypertension. 

In contrast, CCBs that act on both L-type and T-type 
Ca channels and dilate afferent and efferent arterioles 
may alleviate glomerular hypertension and could exert 
salutary actions on the progression of renal injury.  Shu-
do, et al.18, 68, 69 reported that efonidipine acutely de-
creased proteinuria in spontaneously hypertensive rats, 
whereas systemic blood pressure was only partially re-
duced. Additionally, mibefradil potently prevents the de-
velopment of renal injury in SHR55 and DOCA hyper-
tensive rats.2 0 Likewise, cilnidipine, an L-type and 
N-type CCB, has been reported to suppress the elevation 
in blood pressure and blunt the progression of renal inju-
ry in Dahl salt-sensitive rats70 and to ameliorate glomer-
ular injury and proteinuria in Dahl rats fed on a high-su-
crose diet.71  

Our previous studies demonstrated that 8-week-treat-
ment with CCBs including nifedipine and efonidipine 
showed contrasting effects for these antagonists.52 De-
spite the same reduction in systemic blood pressure, 
efonidipine markedly prevented an increase in protein-
uria, whereas nifedipine did not prevent an increase in 

Fig. 3  Schematic illustrating the localization of Ca channels in the kidney.
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proteinuria in subtotally nephrectomized SHR, a model 
of CKD with hypertension.72 Furthermore, the histopath-
ological changes and serum creatinine levels were also 
ameliorated by efonidipine but not by nifedipine. Of 
note, efonidipine reduces proteinuria to the same level as 
enalapril, and both drugs cause afferent and efferent ar-
teriolar dilation. Thus, the renal protective effect of 
efonidipine may be attributed, at least in part, to the glo-
merular hemodynamic action of this agent, since efoni-
dipine is anticipated to reduce glomerular capillary pres-
sure in the same way that enalapril does.

5. Mechanisms for T-type CCB-induced 
Renal Protection 

In addition to hemodynamic factors, multiple mecha-
nisms appear to contribute to the ability of T-type CCBs 
to protect the kidney.  It has been reported that CCBs 
suppress mesangial cell proliferation by inhibiting acti-
vator protein-1 (AP-1)73 and that CCBs modulate gene 
transcriptions involved in proinflammatory changes (in-
terleukin 1β and granulocyte/monocyte colony stimulat-
ing factors).74 Efonidipine, a T-type Ca antagonist, has 
been shown to suppress the phorbol myristate acetate 
(PMA)-induced activation of nuclear factor kappa B 
(NF-κB) in cultured human mesangial cells.75 Further-
more, CCBs could act as free radical scavengers.76 

Rossier, et al.77 found that aldosterone release pro-
voked by angiotensin II and KCl was inhibited by mibe-
fradil but not by nicardipine, suggesting an important 
contribution of T-type Ca channels to aldosterone re-
lease. Similarly, Somekawa, et al.78 recently demonstrat-
ed that efonidipine downregulates the expression of al-
dosterone synthetase, CYP11B2, in rat adrenal cells. In-
deed, plasma aldosterone levels are reported to be lower 
in patients with hypertension79 or chronic glomerulone-
phritis treated with efonidipine rather than with amlodip-
ine.80 Since aldosterone is reported to promote renal in-
jury,81 the blockade of aldosterone release would be an-
ticipated to exert salutary action on the progression of 
renal injury.  

We have recently shown that Rho kinase activation 
participates in the progression of renal injury in subtotal 
nephrectomized rats, a model of chronic renal failure.82 
Conversely, the inhibition of Rho kinase should there-
fore confer benefit in the treatment of renal disease83-85 
in addition to its hypotensive action.86 Of interest, our 
recent study demonstrated that T-type CCBs prevent re-
nal Rho kinase activation induced by subtotal nephrecto-
my and alleviate the progression of kidney disease (Fig. 
4).87 Furthermore, the expression of T-type Ca channels 
is upregulated in kidneys from rats with chronic kidney 
disease.87 Since Rho kinase is known to elicit the in-
flammatory process as well as the enhancement of vas-
cular tone,88 the blockade of T-type Ca channels is ex-
pected to act as a tool for the prevention of CKD.  

In summary, T-type Ca channels play an important role 
in the development of chronic kidney disease, which ac-
tion is mediated by multifaceted pathways, including he-
modynamic, hormonal and inflammatory factors.

6. Clinical Aspects of the Role of CCBs

The divergent action of L-type and T-type CCBs on re-
nal microcirculation and kidney injury in animal models 
may be extrapolated to human CKD. Previous clinical 
trials, including ALLHAT (Antihypertensive and Lipid-
Lowering Treatment to Prevent Heart Attack Trial)89 and 
INSIGHT (Intervention as a Goal in Hypertension Treat-
ment),90 showed equivocal effects of L-type CCBs (am-
lodipine and nifedipine) on the progression of CKD, 
compared with ACE inhibitors or diuretics (Table 1). In 
contrast, AASK (African American Study of Kidney 
Disease and Hypertension)91 demonstrated that the am-
lodipine-treated group manifested an elevation in glo-
merular filtration rate (GFR) at 3 months but exhibited a 
greater reduction in GFR than the ACE inhibitor-treated 
group in African American patients without diabetes 
mellitus (non-DM) with CKD. Furthermore, the addition 
of felodipine to ACE inhibitor therapy conferred no ad-
ditive benefit in non-DM patients with CKD (REIN-2; 
Ramipril Efficacy in Nephropathy trial-2).92 Additional-
ly, IDNT (Irbesartan Diabetic Nephropathy Trial), in 
which the effect of and irbesartan on the progression of 
CKD was evaluated, revealed that amlodipine [an angio-
tensin receptor blocker (ARB)] potently prevented the 
progression of CKD, whereas amlodipine failed to offer 
renal protection in type 2 diabetic patients with CKD.93 
Similarly, the GUARD (Gauging Albuminuria Reduc-
tion with Lotrel in Diabetic Patients with Hypertension) 
trial showed that the reduction in albuminuria was less in 
the amlodipine-treated group than in the diuretics-treated 
group.94 Head-to-head comparison of amlodipine vs. 
valsartan also unveiled an increase in albuminuria in 
Japanese type 2 DM patients treated with amlodipine 
(SMART; Shiga Microalbuminuria Reduction Trial).95 
In concert, these observations suggest reduced or no pro-
tective action of the L-type CCB in the progression of 
CKD.  

One caveat is that the adequate control of blood pres-
sure would be anticipated to alleviate the progression of 
CKD.  In the sub-analysis of IDNT, the relative risk for 
the development of end-stage renal disease was reported 
to be lower in patients with systolic blood pressure be-
low 121 mmHg, and the risk in the amlodipine-treated 
group tended to parallel the levels of systolic blood pres-
sure.93 Furthermore, in the NICE Combi (Nifedipine and 
Candesartan Combination) study, in which the effects of 
the maximal dose of candesartan and combination thera-
py with candesartan and controlled-release nifedipine on 
microalbuminuria were compared, the combination 
treatment group manifested significantly reduced albu-
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Fig. 4  Effects of efonidipine on Rho kinase activity and renal histology in subtotally nephrectomized spontaneously hypertensive rats 
(SHR-Nx).
(A) The phosphorylation level of MYPT1, as a marker for Rho kinase activity, in renal cortex of SHR-Nx. *P<0.05 vs. Sham, 
##P<0.01 vs. SHR-Nx. (B) Effects of Ca channel blockers on the expression of α-smooth muscle action (SMA) and interstitial fibrosis 
in kidneys from SHR-Nx. R(-) indicates an R(-)-enantiomer of efonidipine that selectively blocks T-type Ca channels but has no effect 
on L-type Ca channels. Data adopted with modification from Sugano N, et al.87

Table 1  Renal protective effects of L-type CCB

CCB Control Observation 
period

Results

ALLHAT89 Amlodipine Diuretics, ACE inhibitors, β
-blockers

Non-DM
DM

6 years eGFR preserved

INSIGHT90 Nifedipine-GITS Diuretics Non-DM
DM

4 years Nifedipine-GITS better than 
diuretics in maintaining eGFR

AASK91 Amlodipine ACE inhibitors, β-blockers Non-DM 4 years Greater reduction in eGFR with 
Amlodipine than ACE with 
inhibitors

REIN-292 ACE inhibitors + Felodipine ACE inhibitors Non-DM 4 years Renal events did not reduce 
despite addition of felodipine

IDNT93 Amlodipine ARB DM 5 years Renal events more frequent with 
amlodipine than with ARB

GUARD94 ACE inhibitors + Amlodipine ACE inhibitors + Diuretics DM 1 years Reduction in albuminuria less 
with amlodipine than with 
diuretics

SMART95 Amlodipine Valsartan DM 24 weeks Albuminuria increased with 
amlodipine

GITS; gastrointestinal therapeutic system.
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minuria with greater reductions in systemic blood pres-
sure.96 Accordingly, these observations lend support to 
the formulation that strict blood pressure control offers 
renal protection that does not depend on the type of anti-
hypertensive agent used.  

In contrast, a growing body of clinical evidence has 
shown that CCBs with blocking activity toward T-type 
Ca channels provide salutary action in protection against 
renal injury (Table 2). We previously demonstrated that 
efonidipine was as potent as ACE inhibitors in reducing 
proteinuria.21 Furthermore, efonidipine significantly re-
duced proteinuria even in a subset of patients in which 
mean blood pressures failed to decrease below 100 
mmHg. Ishimitsu, et al.80 also reported that switching 
from amlodipine to efonidipine caused a significant de-
crease in proteinuria in patients with chronic glomerulo-
nephritis. Finally, comparison of azelnidipine (an L/T-
type CCB), Table 3 with amlodipine or nifedipine (L-
type CCBs) showed greater reductions in proteinuria by 
azelnidipine in patients with CKD97 and DM,98 respec-
tively.   

Cilnidipine is a representative N-type CCB(Table 3) 
and dilates both afferent and efferent arterioles through 
the inhibition of N-type Ca channels in nerve terminals 
innervating renal afferent and efferent arterioles. It has 
been reported that cilnidipine exerts antiproteinuric ac-
tion when administered in patients with essential hyper-
tension.99 Recently, Fujita, et al.100 demonstrated that 

add-on therapy with cilnidipine reduces proteinuria more 
potently than that with amlodipine in CKD patients 
treated with renin-angiotensin blocking agents (CART-
ER study, Table 2). They suggest that the beneficial ac-
tion of cilnidipine on proteinuria is mediated by the inhi-
bition of sympathetic nerve activity and the resultant 
amelioration of glomerular hypertension. Of note, in a 
subset of the DM nephropathy group, they failed to 
show a significant decrease in proteinuria with cilnidip-
ine.  Since the salutary action of cilnidipine on protein-
uria appears to be attributed to the blockade of N-type 
Ca channels, it is reasonable to speculate that the failure 
to alleviate proteinuria can be ascribed to the impaired 
integrity of sympathetic nerve terminals in DM.  In con-
trast, Abe, et al.101 recently demonstrated that during 
treatment with ARB, benidipine, but not amlodipine, po-
tently reduces proteinuria in DM as well as in non-DM 
patients.  Based on the pharmacological properties of 
benidipine (i.e., blocking action on L/T/N-type Ca chan-
nels), this study underscores a critical role of T-type Ca 
channel blockade not only in non-DM but also in DM 
patients.  

Very recently, Omae, et al.23 evaluated the long-term 
effects of CCBs with different Ca channel subtype activ-
ities on the development of end-stage renal disease in 
107 non-DM CKD patients (Table 2). This prospective 
study used L-type CCBs (nifedipine, amlodipine, nicar-
dipine and nitrendipine), L/T-type CCBs (benidipine, 

Table 2  Renal protective effects of L/N- and L/T-type CCB

Study name CCB Control Subjects Results

Hayashi K, et al.21 Efonidipine (L/T-type) ACE inhibitors Non-DM Same proteinuria-reducing effects
CCr well preserved with 
efonidipine

Ishimitsu T, et al.80 Efonidipine (L/T-type) Amlodipine (L-type) Chronic 
glomerulonephritis

Proteinuria-reducing effect better 
with efonidipine

Nakamura T, et al.97 Azelnidipine (L/T-type) Amlodipine (L-type) Mild CKD Proteinuria-reducing effect better 
with azelnidipine

Ogawa S, et al.98 Azelnidipine (L/T-type) Nifedipine-CR (L-type) DM Proteinuria-reducing effect better 
with azelnidipine

Tsuchihashi T, et al.99 Cilnidipine (L/N-type) Other CCBs Essential hypertension
Renal hypertension

Proteinuria decreased
No changes in proteinuria

Fujita T, et al.100

(Carter study)
ARB + Cilnidipine 
(L/N-type)

ARB + Amlodipine 
(L-type)

Non-DM

DM

Proteinuria-reducing effect 
better with cilnidipine
No difference

Abe M, et al.101 ARB + Benidipine 
(L/T/N-type)

ARB + Amlodipine 
(L-type)

CKD stage3-5
Non-DM, DM

Proteinuria-reducing effect better 
with benidipine

Omae K, et al.23 L/T-type CCB
Benidipine
Barnidipine
Manidipine
Nilvadipine
Efonidipine

L-type CCB
Nifedipine
Amlodipine
Nicardipine
Nitrendipine

CKD (non-DM) Better outcome of  renal events 
with L/T-type CCB

CCr; creatinine clearance.
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barnidipine, manidipine, nilvadipine and efonidipine, 
Table 3) and non-dihydropyridines (diltiazem and vera-
pamil) and found that the use of L-type CCBs was asso-
ciated with an increase in proteinuria. Furthermore, the 
use of L/T-type CCBs was associated with favorable out-
comes, as assessed by the changes in eGFR and the renal 
survival rate. 

In summary, the results obtained from various clinical 
trials demonstrate that the effects of CCBs with L-type 
Ca channel specific blocking activity on renal outcomes 
vary depending on several factors, including underlying 
renal disease, the blood pressure achieved and the dura-
tion of the study. In contrast, CCBs with L/T-type block-
ing activity consistently offer favorable action on the de-
velopment of CKD. Although the role of N-type Ca 
channel blockade in CKD appears intriguing, its actual 
effect may depend on the integrity of the underlying 
sympathetic nervous system.  

Concluding Remarks

Pharmacological characterization of Ca channel sub-
types and their blockers allows understanding of the role 
of these channels in the kidney.  It is now established 
that the blockade of T-type or N-type Ca channels exerts 
renal protective action by abrogating glomerular hyper-
tension through vasodilator action on both afferent and 
efferent arterioles.  Additionally, T-type CCBs may pro-
vide beneficial action through multiple non-hemody-
namic mechanisms that act to suppress inflammatory 
processes and the renin-angiotensin-aldosterone system.  

Such multifaceted action of T-type CCBs serves to pro-
tect against renal injury, and their use is anticipated to 
increase in the treatment of hypertension with CKD.  Al-
though these subclasses of CCB are clinically available 
only in Japan and South Korea, a growing body of evi-
dence regarding their efficacy should facilitate the 
spread of knowledge on these novel types of CCBs.102,103 
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