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￼￼￼ Introduction

It has been only 5 years since the first report of suc-
cessful generation of induced pluripotent stem (iPS) cells 
by defined factors.1 Now we are in the decade of cellular 
reprogramming,2–4 and people take it for granted that so-
matic cells of any type can be turned into an immature 
state by manipulation of transcription networks. Differ-
entiation plasticity of somatic cells was actually proven in 
a hematopoietic system well before the generation of iPS 
cells. We and others have reported lineage conversion of 
hematopoietic progenitors as well as mature hematopoi-
etic cells in response to certain stimuli such as ectopic 
cytokine signals or activation of transcription factors.5–8

The hematopoietic system is undoubtedly the best-stud-
ied differentiation system throughout the body. Differen-
tiation of hematopoietic cells originates from hematopoi-
etic stem cells (HSCs), followed by a hierarchical process 
of cell fate decision and lineage commitment leading 
to terminally differentiated mature blood cells.9 These 
processes are often dictated by the instructive action of 
hematopoietic transcription factors, which ultimately re-
strict the fate of differentiation.10 It was long thought that 
commitment was an irreversible process, and that cells 
differentiated into a certain lineage could not change 
their fate. However, this paradigm was first challenged 
by the seminal work of Kondo et al. just over 10 years 
ago, showing that ectopic cytokine signals could change 
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Differentiation￼￼￼of￼￼￼hematopoietic￼￼￼cells￼￼￼is￼￼￼a￼￼￼sequential￼￼￼process￼￼￼of￼￼￼cell￼￼￼fate￼￼￼decision￼￼￼originating￼￼￼from￼￼￼he-
matopoietic￼￼￼stem￼￼￼cells￼￼￼(HSCs),￼￼￼allowing￼￼￼multi-￼￼￼or￼￼￼oligopotent￼￼￼progenitors￼￼￼to￼￼￼commit￼￼￼to￼￼￼certain￼￼￼lineages.￼￼￼
HSCs￼￼￼ are￼￼￼ cells￼￼￼ that￼￼￼ are￼￼￼ able￼￼￼ to￼￼￼ self-renew￼￼￼and￼￼￼ repopulate￼￼￼ the￼￼￼marrow￼￼￼ for￼￼￼ the￼￼￼ long￼￼￼ term.￼￼￼They￼￼￼first￼￼￼
differentiate￼￼￼ into￼￼￼multipotent￼￼￼progenitors￼￼￼ (MPPs),￼￼￼which￼￼￼give￼￼￼ rise￼￼￼ to￼￼￼ common￼￼￼ lymphoid￼￼￼progenitors￼￼￼
(CLPs)￼￼￼and￼￼￼common￼￼￼myeloid￼￼￼progenitors￼￼￼(CMPs).￼￼￼CMPs￼￼￼then￼￼￼differentiate￼￼￼into￼￼￼granulocyte￼￼￼monocyte￼￼￼
progenitors￼￼￼ (GMPs)￼￼￼ and￼￼￼megakaryocyte￼￼￼ erythroid￼￼￼progenitors￼￼￼ (MEPs),￼￼￼which￼￼￼are￼￼￼ the￼￼￼precursors￼￼￼ of￼￼￼
granulocytes/monocytes￼￼￼and￼￼￼erythrocytes/megakaryocytes,￼￼￼ respectively.￼￼￼Lineage￼￼￼ specification￼￼￼at￼￼￼dif-
ferentiation￼￼￼branch￼￼￼points￼￼￼ is￼￼￼dictated￼￼￼by￼￼￼ the￼￼￼activation￼￼￼of￼￼￼ lineage-specific￼￼￼ transcription￼￼￼ factors￼￼￼ such￼￼￼
as￼￼￼C/EBPα,￼￼￼PU.1,￼￼￼and￼￼￼GATA-1.￼￼￼The￼￼￼role￼￼￼of￼￼￼these￼￼￼transcription￼￼￼factors￼￼￼is￼￼￼generally￼￼￼instructive,￼￼￼and￼￼￼the￼￼￼
expression￼￼￼of￼￼￼a￼￼￼single￼￼￼factor￼￼￼can￼￼￼often￼￼￼determine￼￼￼cell￼￼￼fate.￼￼￼Differentiation￼￼￼was￼￼￼long￼￼￼regarded￼￼￼as￼￼￼an￼￼￼ir-
reversible￼￼￼process,￼￼￼and￼￼￼it￼￼￼was￼￼￼believed￼￼￼that￼￼￼somatic￼￼￼cells￼￼￼would￼￼￼not￼￼￼change￼￼￼their￼￼￼fate￼￼￼once￼￼￼they￼￼￼were￼￼￼dif-
ferentiated.￼￼￼This￼￼￼paradigm￼￼￼was￼￼￼first￼￼￼challenged￼￼￼by￼￼￼the￼￼￼finding￼￼￼that￼￼￼ectopic￼￼￼cytokine￼￼￼signals￼￼￼could￼￼￼change￼￼￼
the￼￼￼fate￼￼￼of￼￼￼differentiation,￼￼￼probably￼￼￼through￼￼￼modulating￼￼￼internal￼￼￼transcription￼￼￼networks.￼￼￼Subsequently,￼￼￼
we￼￼￼and￼￼￼others￼￼￼showed￼￼￼that￼￼￼virtually￼￼￼all￼￼￼progenitors,￼￼￼ including￼￼￼CLPs,￼￼￼CMPs,￼￼￼GMPs,￼￼￼and￼￼￼MEPs,￼￼￼still￼￼￼
retain￼￼￼differentiation￼￼￼plasticity,￼￼￼and￼￼￼they￼￼￼can￼￼￼be￼￼￼converted￼￼￼into￼￼￼lineages￼￼￼other￼￼￼than￼￼￼their￼￼￼own￼￼￼by￼￼￼ecto-
pic￼￼￼activation￼￼￼of￼￼￼only￼￼￼a￼￼￼single￼￼￼lineage-specific￼￼￼transcription￼￼￼factor.￼￼￼These￼￼￼findings￼￼￼established￼￼￼a￼￼￼novel￼￼￼
paradigm￼￼￼for￼￼￼cellular￼￼￼differentiation￼￼￼and￼￼￼opened￼￼￼up￼￼￼an￼￼￼avenue￼￼￼for￼￼￼artificially￼￼￼manipulating￼￼￼cell￼￼￼fate￼￼￼for￼￼￼
clinical￼￼￼use.￼￼￼ (Keio J Med 60 (2) : 47–55, June 2011)

Keywords:￼￼￼ transcription￼￼￼factor,￼￼￼hematopoiesis,￼￼￼differentiation,￼￼￼reprogramming,￼￼￼plasticity

Copyright © 2011 by The Keio Journal of Medicine.



Nakajima H: Transcriptional Control of Hematopoiesis48

the fate of differentiation.6 Since then, experimental evi-
dence has accumulated supporting enormous plasticity 
of hematopoietic cells during differentiation, and a novel 
paradigm has been reached that differentiation can be 
controlled by modulation of transcription networks.

This review will focus on the differentiation pathways 
of hematopoiesis, the role of transcription factors in he-
matopoietic differentiation, and the amazing plasticity 
retained by hematopoietic progenitors and mature blood 
cells.

Differentiation￼￼￼Program￼￼￼of￼￼￼Hematopoietic￼￼￼Cells

Outstanding efforts by many groups over a decade have 
now arrived at a comprehensive road map of hematopoi-
etic differentiation from hematopoietic stem cells (HSCs) 
to terminally differentiated cells.9,11,12 This was mostly 
done by prospective isolation of HSCs and differentiation 
intermediates including hematopoietic progenitor cells 
(HPCs) using flow cytometry (FACS) (Fig.￼￼￼1).

HSCs are cells that can self-renew and can produce all 
types of blood cells throughout life. The two critical fea-
tures of HSCs that distinguish them from other hemato-
poietic cells are their self-renewal capacity and multilin-
eage differentiation potential. In murine hematopoiesis, 
HSCs make up a very small fraction of cells in the bone 
marrow (BM) and lack lineage-affiliated cell surface 
markers (Lin) but express high levels of c-Kit and Sca-1 
(KSL cells). The most primitive HSCs with self-renewal 
and long-term repopulating (LTR) capacities (long-term 
HSCs; LT-HSCs) are enriched in Thy1.1low/−, CD34low/− 
or CD150+ Flt3/Flk2− KSL.13–15 CD150+CD244−CD48− 
cells have also been described as nearly pure HSCs.15 
Wilson et al. have further shown that CD150+CD41−

CD48−CD34− KSL cells are more immature HSCs, a 
small subset of which (about 20%) is in a dormant state.16 
These populations of cells constitute about 0.01% of total 
BM cells, and of this 0.01%, 1 in 3 to 1 in 5 cells were 
found to have LTR capacity in a competitive repopulation 
assay.

 Cells with multilineage differentiation potential that 
can reconstitute the marrow for a limited period are 
termed short-term HSCs (ST-HSCs), and are the immedi-
ate downstream progenies of LT-HSCs. ST-HSCs give rise 
to multipotent progenitors (MPPs), cells with multilin-
eage potential and a shorter reconstitution capability than 
ST-HSCs. ST-HSCs and MPPs are considered to reside in 
the CD34+ Flt3− KSL and CD34+ Flt3+ KSL fractions, re-
spectively. However, other reports have stated that there 
is no clear-cut separation between these two populations. 
In fact, expression of Flt3 was reported recently to couple 
with a loss of MegE potential, as described below.

Diversification of myeloid and lymphoid pathways fol-
lows after the MPP stage (Fig.￼￼￼1A). Common lymphoid 
progenitors (CLPs) are the most primitive common pre-
cursor for T and B lymphocytes and have a Lin− IL-7Ra+ 

Thy-1− Sca-1lo/− c-Kitlo phenotype.17 The hallmark of this 
population is the expression of interleukin (IL)-7 recep-
tor, which is critical for the expansion of the early lym-
phoid population. Indeed, abrogation of IL-7R leads to 
severe combined immunodeficiency (SCID).

Common myeloid progenitors (CMPs), isolated as a 
Lin− IL-7Rα− Sca-1− c-Kit+ FcgRII/IIIlo CD34+ popula-
tion, are the earliest precursors for non-lymphoid cells that 
have the potential for erythroid, megakaryocyte, granulo-
cyte and monocyte development18 (Fig.￼￼￼1A). CMPs fur-
ther generate granulocyte-monocyte progenitors (GMPs; 
Lin− IL-7Rα− Sca-1− c-Kit+ FcgRII/IIIhi CD34+) and 
megakaryocyte-erythroid progenitors (MEPs; Lin− IL-
7Rα− Sca-1− c-Kit+ FcgRII/IIIlo CD34−), which give rise 
to granulocytes/monocytes and erythrocytes/megakary-
ocytes, respectively18 (Fig.￼￼￼1A). These progenitors were 
shown to generate respective progenies in colony assays 
and in in vivo transplantation experiments.

It was initially thought that bifurcation of the myeloid 
vs. lymphoid lineage occurred right after the MPP stage, 
but the story later turned out to be not as simple as that. 
Recent evidence showing the existence of MPPs lack-
ing megakaryocyte/erythroid (MegE) potential suggests 
that MPPs are heterogeneous.9,11,12 A current model of 
myeloid/lymphoid commitment predicts that some MPPs 
selectively lose MegE potential, leaving the lymphoid 
and granulocyte/monocyte potential intact, on their way 
to becoming newly identified lymphoid primed multi-
potent progenitors (LMPPs) or granulocyte-monocyte-
lymphoid progenitors (GMLPs) (Fig.￼￼￼1B). LMPPs are de-
scribed as CD34+MPPs expressing Flt3, and GMLPs are 
CD34+MPPs marked by PU.1 expression. Of note, CMPs 
are marked by the expression of GATA-1 as described 
below. Please refer to the selected readings for a detailed 
scheme of lineage commitment from HSCs.12

Transcriptional￼￼￼Control￼￼￼of￼￼￼Cell￼￼￼Fate￼￼￼Decision

It is widely known that lineage commitment of hema-
topoietic cells requires precise regulation of transcription 
factors. In the past few decades, disruption of various 
transcription factors in the mouse genome has uncovered 
a fine picture of transcriptional networks regulating he-
matopoietic differentiation (Fig.￼￼￼2).

Emergence of CMPs from MPPs is considered to de-
pend on the simultaneous expression of PU.1 and GATA-
1. PU.1 and GATA-1 play critical, instructive roles for 
granulocyte/monocyte (GM) and MegE lineage commit-
ment, respectively.19–21 PU.1 transactivates a number of 
GM and lymphoid genes, and PU.1-deficient mice display 
profound defects in the development of B cells, mono-
cytes and granulocytes.22 On the other hand, GATA-1 
induces MegE-related genes, and is critical for the de-
velopment of megakaryocytes and erythroid cells.23–27 A 
counter-regulatory mechanism of PU.1 and GATA-1 ac-
tivities has been reported in which either one of the two 
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factors represses the other’s expression or transcriptional 
activity.28–31 A current model predicts that low-level ex-
pression of both PU.1 and GATA-1 in CMPs makes them 
competent for both GM and MegE lineages.32 Upregula-
tion of PU.1 activity is considered to be a critical step 
for CMPs to commit to the GM lineage (and lose MegE 
activity), whereas activation of GATA-1 skews CMPs to 
follow the MegE pathway.33,34 The molecular mechanism 
for this reciprocal regulation of PU.1 and GATA-1 is cur-
rently not well understood.

Differentiation of GMPs from CMPs depends on the 
expression of CCAAT/enhancer binding protein (C/EBP) 
α. C/EBPα-deficient mice lack mature neutrophils and 
eosinophils,35 and conditional disruption of C/EBPα in 
adult mice leads to the block of CMP-GMP transition.36 
C/EBPα activates a number of myeloid genes, such as 
granulocyte-colony stimulating factor receptor (G-CSF 
R), macrophage colony stimulating factor receptor (M-
CSF R), myeloperoxidase (MPO), and neutrophil elas-
tase.37–40 The early stage of neutrophil differentiation is 
also regulated by Gfi-1.41–44 Gfi-1−/− mice have defects in 
neutrophil differentiation subsequent to the promyelocyte 
stage. The terminal stage of neutrophil differentiation 
critically depends on another member of the C/EBP fam-

ily, C/EBPε. C/EBPε plays a critical role in the expression 
of secondary and tertiary granule proteins, since lack of 
C/EBPε leads to the neutrophil-specific granule deficien-
cy phenotype.45

As discussed above, GATA-1 is critical for commitment 
and further differentiation of the MegE lineage. The stem 
cell leukemia (SCL) gene and EKLF are also essential for 
erythropoiesis, since lack of either protein leads to severe 
anemia.46,47 GATA-1 collaborates with FOG-1 to induce 
erythroid differentiation, whereas GATA-1 together with 
AML-1 induces megakaryocytic differentiation.

Early lymphoid differentiation requires Ikaros.48 Com-
mitment and further differentiation of CLPs to the B 
lymphoid lineage critically depends on the expression of 
three transcription factors: E2A, EBF and Pax5.49 Loss of 
E2A or EBF leads to differentiation block at the pre-pro-
B cell stage.49 In the case of T cells, GATA-3 is absolutely 
essential for early thymocyte differentiation.50

Sequential￼￼￼Activation￼￼￼of￼￼￼Transcription￼￼￼Factors￼￼￼￼￼￼
Specifies￼￼￼Eosinophil￼￼￼and￼￼￼Basophil￼￼￼Commitment

It has been shown that mast cells, eosinophils and ba-
sophils are progenies of GMPs. Eosinophil-committed 

Fig.￼￼￼1 Cellular pathways of hematopoietic differentiation.
(A) Classical myeloid versus lymphoid differentiation pathway. Myeloid and lymphoid pathways diverge right after the multipotent 
progenitor (MPP) stage. (B) The new developmental pathways of myeloid versus lymphoid differentiation. This model integrates 
newly identified lymphoid-primed multipotent progenitors (LMPPs) and granulocyte-monocyte-lymphoid progenitors (GMLPs), mul-
tipotent progenitors that selectively lost MegE potential. HSC, hematopoietic stem cell; CMP, common myeloid progenitor; CLP, com-
mon lymphoid progenitor; MEP, megakaryocyte-erythroid progenitor; GMP, granulocyte-monocyte progenitor.
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progenitors (EoPs) can be isolated as cells with the IL-
5Ra+ Lin− Sca-1− CD34+ c-Kitlo phenotype.51 Mast cell 
progenitors (MCPs) and basophil progenitors (BaPs) 
have the Lin− CD34+ β7hi FcεRIαlo FcγRII/III+ c-Kitlo 
Thy-1− and Lin− CD34+ FcεRIαhi c-Kit− phenotypes, re-
spectively.52 It has been reported that a common precur-
sor for mast cells and basophils, the basophil-mast cell 
bipotent progenitor (BMCP), exists in spleen, and has the 
Lin−CD13loCD34+β7hiFcεRIα−FcγRII/III+c-Kit+Thy-1+ 
phenotype.53

Interestingly, the order of expression of C/EBPα and 
GATA-2 specifies the eosinophil versus basophil lineage 
from uncommitted progenitors54 (Fig.￼￼￼3). If C/EBPα ex-
pression is followed by GATA-2, the cells become eo-
sinophils; in turn, if the order of expression is reversed, 
they become basophils. The same uncommitted progeni-
tors can also generate neutrophil-committed progeni-
tors and MCPs. However, sustained C/EBPα expression 
is required for the cells to go into the neutrophil lineage 
through GMP. In contrast, sustained GATA-2 expression 
leads cells to become MCPs.

￼￼￼ Conversion￼￼￼of￼￼￼Hematopoietic￼￼￼Lineages￼￼￼by￼￼￼￼￼￼
Ectopic￼￼￼Cytokine￼￼￼Signals

It was long believed that differentiation was an irrevers-
ible process and cells could not change lineages once they 
were differentiated. However, this paradigm was recently 
challenged by the finding of lineage infidelity of com-
mitted hematopoietic progenitors.6,55,56 A seminal report 
from Kondo et al. showed that enforced signals from 
interleukin (IL)-2 or granulocyte macrophage-colony 
stimulating factor (GM-CSF) receptor could induce my-
eloid conversion in common lymphoid progenitor (CLP) 
and pro-T cells.6 When CLPs and pro T cells taken from 
transgenic mice expressing IL-2 receptor β chain were 
cultured in the presence of IL-2, cells converted to gran-
ulocytes and monocytes after several days. Irreversible 
commitment to myeloid lineage required at least 2 days 
of cytokine stimulation. Interestingly, pro B cells and 
committed DN3 thymocytes were resistant to this IL-2-
induced lineage conversion.6,55 In addition, CLPs and pro 
T cells could only be directed to GM lineages even under 
erythroid culture conditions. These data clearly showed 
that at least CLPs and pro T cells possess latent myeloid 
differentiation potential, which can be activated by ecto-
pic cytokine signals.

Fig.￼￼￼2  Transcription factors regulating hematopoietic differentiation.
Transcription factors regulating lineage specification at various differentiation branch points or facilitating differentiation along spe-
cific lineage pathways are indicated.
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Ablation￼￼￼of￼￼￼Lineage-specific￼￼￼Transcription￼￼￼Factors￼￼￼
Unfixes￼￼￼Lineage￼￼￼Commitment

As described, commitment to a specific lineage criti-
cally depends on the activity of lineage-specific tran-
scription factors. The process of commitment may re-
quire only transient action of transcription factors, but in 
some cases, their activity must be maintained throughout 
differentiation to preserve lineage identity.57–59 One such 
example is Pax5, an essential regulator for B cell differ-
entiation (Fig.￼￼￼4). Pax5 is critical for transition from pre-
pro-B cells to pro-B cells, and its absence leads to differ-
entiation arrest at the early pro-B cell stage. Interestingly, 
Pax5−/− pro-B cells can be cultured indefinitely on stromal 
cells with IL-7. Furthermore, these cells are not actually 
committed to B cells, but instead retained multilineage 
differentiation potential.57,60 Conditional inactivation of 
Pax5 in pro-B cells canceled their commitment to the B 
cell lineage, and they regained their differentiation poten-
tial to macrophages and T cells.58 Moreover, conditional 
ablation of Pax5 led to the dedifferentiation of mature B 
cells back to early uncommitted progenitors that were ca-
pable of differentiating into T cells in vivo.59 These sur-
prising observations underscore the critical role of Pax5 
not only in commitment to the B cell lineage but also in 

maintenance of B cell identity.
Another example came from the analysis of GATA-

1 knockout mice (Fig.￼￼￼ 4). GATA-1−/− proerythroblasts 
proliferate indefinitely on OP9 stroma in the presence of 
erythropoietin (Epo) and display differentiation potential 
to myeloid and mast cells by the stimulation of granu-
locyte macrophage-colony stimulating factor (GM-CSF) 
and interleukin (IL)-3, respectively.61 This observation 
also suggests that lack of lineage-specific transcription 
factors unfixes commitment to the respective lineage and 
allow cells to dedifferentiate back to an immature state 
that retains multilineage differentiation potential.

Lineage￼￼￼Conversion￼￼￼by￼￼￼Ectopic￼￼￼Expression￼￼￼of￼￼￼￼￼￼
Lineage-specific￼￼￼Transcription￼￼￼Factors

Lineage infidelity of differentiated hematopoietic cells 
and strong lineage instructing capability of lineage-spe-
cific transcription factors suggested to us that such tran-
scription factors may induce lineage conversion when 
expressed ectopically (Fig.￼￼￼4).

Iwasaki et al. were the first to show that enforced ex-
pression of lineage-specific transcription factor induced 
transdifferentiation of hematopoietic progenitors.7 They 
showed that ectopic expression of GATA-1 in CLPs, pro-

Fig.￼￼￼3  Order of expression of C/EBPα and GATA-2 specifies eosinophil versus basophil lineage commitment.
In uncommitted progenitors such as CMPs, the expression of C/EBPα and GATA-2 is kept at a low level. If C/EBPα or GATA-2 is 
upregulated and maintained, cells are committed to neutrophil/monocyte or mast cell pathways, respectively. If C/EBPα is upregulated 
first and GATA-2 follows, the cells become eosinophils. If the order of expression is reversed, they become basophils. EoP, eosinophil-
committed progenitor; BaP, basophil-committed progenitor; MCP, mast cell progenitors.
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B cells, CMPs and GMPs induced their transdifferentia-
tion to the MegE lineage. Our group reported the conver-
sion of CLPs, MEPs, early B cells and early T cells by 
induction of C/EBPα activity.5 Likewise, retroviral ex-
pression of C/EBPα efficiently converted mature B cells, 
CLPs and pro-T cells into the granulocyte/macrophage 
lineage.8,62

To investigate the conversion process in more detail, 
we generated transgenic mice expressing a conditional 
form of C/EBPα (C/EBPα-ER) in all hematopoietic cells.5 
Since activity of C/EBPα can be instantly induced in 
these mice by addition of 4-hydroxy tamoxifen (4-HT), 
this system allowed us to examine the detailed conver-
sion process without cultivation of cells with cytokines 
in vitro and infection of retrovirus, both of which may 
artificially skew differentiation processes. When C/EBPα 
activity was induced in MEPs and CLPs by addition of 
4-HT, these cells were efficiently reprogrammed to the 
GM lineage. Clonal analysis revealed that the conversion 
occurred at the single cell level. Interestingly, transient 

activation of C/EBPα for 12 h for CLPs and 4 days for 
MEPs was sufficient to initiate the conversion process.5 
We have also shown that conversion to the GM lineage 
could be induced not only in vitro, but also in vivo by 
systemic administration of 4-HT.

Mechanism￼￼￼of￼￼￼Lineage￼￼￼Conversion

Given that lineage conversion is induced by the activa-
tion of transcription factors, it raises the question whether 
the conversion process is accompanied by dedifferen-
tiation of mature hematopoietic cells back to immature 
progenitors followed by tracing a differentiation path to 
other lineages, or whether cells are directly converted to 
other lineages through biphenotypic intermediate cells. 
Analysis of C/EBPα-ER transgenic mice indicated the 
latter possibility to be the case5 (Fig.￼￼￼5). For example, we 
identified cells expressing both erythroid (CD71) and GM 
(Gr-1, CD11b) markers during C/EBPα-mediated conver-
sion of MEPs to the GM lineage. Similarly, conversion of 

Fig.￼￼￼4  Lineage conversion and dedifferentiation of hematopoietic cells by modulation of transcription factors.
Lineage conversion of hematopoietic cells by activation of C/EBPα and GATA-1, and dedifferentiation of B or MegE cells by loss of 
Pax5 or GATA-1. Reported pathways of conversion are shown by arrows. Loss of Pax5 or GATA-1 unfixes lineage commitment and 
leads to dedifferentiation back to multipotent progenitors.
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B cells to myeloid cells occurred through B220loCD11b+ 
or CD19+CD11b+ biphenotypic intermediate cells. It is 
interesting to note that these intermediate cells have re-
arranged immunoglobulin (Ig) genes, clearly indicating 
that these cells originated from B cells. These observa-
tions demonstrate that enforced, ectopic expression of 
transcription factors induces direct lineage conversion 
between lineages through biphenotypic intermediate 
cells.

In contrast, the dedifferentiation mechanism is respon-
sible for the conversion of mature B cells to T cells in vivo 
by inactivation of Pax559 (Fig.￼￼￼ 4). As discussed in the 
previous section, cells reacquire multipotentiality upon 
loss of Pax5, and these cells can follow the physiological 
differentiation path to T cells. This is supported by the 
fact that Pax5-deleted mature B cells can restore T lym-
phopoiesis in Rag2−/− mice with a normal differentiation 
pattern.59 Double-positive immature T cells taken from 
these mice retained the Ig rearrangement, indicating that 
the cells were derived from mature B cells.

Conclusions￼￼￼and￼￼￼Future￼￼￼Directions

It is now clear from in vitro studies that virtually all 
hematopoietic cells at any stage of differentiation sustain 
differentiation plasticity. The problem here is that most of 
the studies were done in artificial settings, such as over-
expression of transcription factors or ectopic cytokine 
stimulation. This raises the question whether lineage con-
version could occur in physiological settings in vivo. Our 
study using transgenic mice expressing an inducible form 
of C/EBPα revealed that lineage conversion could occur 
in the in vivo environment, at least by enforced activa-
tion of transcription factors. So the question is, are there 
any physiological conditions where lineage-specific tran-
scription factors are activated ectopically in vivo? Cur-
rently, we cannot think of any possibility of such a condi-
tion existing in vivo, suggesting that lineage conversion 
is simply an observation indicating the latent plasticity of 
hematopoietic cells. However, if in future studies novel 
physiological pathways ectopically activating transcrip-
tion factors were discovered, that development would 

Fig.￼￼￼5  Mechanism of lineage conversion.
Conversion of various progenitors by ectopic activation of C/EBPα. Lineage conversion occurs through biphenotypic intermediate 
cells, not by tracing back normal differentiation pathways. Cells in pink boxes are biphenotypic intermediate cells that have cell sur-
face markers of original cells and myeloid lineage cells.
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definitely add a novel and exciting twist to the current 
understanding of hematopoiesis.
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